Modernize cfg-parser from mzscheme to Racket libraries.

original commit: 4ff4c677bd354cb1a26adf0c3e0e4de03a7a3939
tokens
Danny Yoo 12 years ago
commit 33ebcd7a78

File diff suppressed because it is too large Load Diff

@ -83,7 +83,7 @@
(define-syntax define-tokens (make-define-tokens #f))
(define-syntax define-empty-tokens (make-define-tokens #t))
(define-struct position (offset line col))
(define-struct position-token (token start-pos end-pos))
(define-struct position (offset line col) #f)
(define-struct position-token (token start-pos end-pos) #f)
)

@ -12,55 +12,50 @@
;; We use a hash-table to represent the result function 'a -> 'b set, so
;; the values of type 'a must be comparable with eq?.
(define (digraph nodes edges f- union fail)
(letrec (
;; Will map elements of 'a to 'b sets
(results (make-hash-table))
(f (lambda (x) (hash-table-get results x fail)))
;; Maps elements of 'a to integers.
(N (make-hash-table))
(get-N (lambda (x) (hash-table-get N x zero-thunk)))
(set-N (lambda (x d) (hash-table-put! N x d)))
(stack null)
(push (lambda (x)
(set! stack (cons x stack))))
(pop (lambda ()
(letrec [
;; Will map elements of 'a to 'b sets
(results (make-hash-table))
(f (lambda (x) (hash-table-get results x fail)))
;; Maps elements of 'a to integers.
(N (make-hash-table))
(get-N (lambda (x) (hash-table-get N x zero-thunk)))
(set-N (lambda (x d) (hash-table-put! N x d)))
(stack null)
(push (lambda (x)
(set! stack (cons x stack))))
(pop (lambda ()
(begin0
(car stack)
(set! stack (cdr stack)))))
(depth (lambda () (length stack)))
;; traverse: 'a ->
(traverse
(lambda (x)
(push x)
(let ((d (depth)))
(set-N x d)
(hash-table-put! results x (f- x))
(for-each (lambda (y)
(if (= 0 (get-N y))
(traverse y))
(hash-table-put! results
x
(union (f x) (f y)))
(set-N x (min (get-N x) (get-N y))))
(edges x))
(if (= d (get-N x))
(let loop ((p (pop)))
(set-N p +inf.0)
(hash-table-put! results p (f x))
(if (not (eq? x p))
(loop (pop)))))))))
(car stack)
(set! stack (cdr stack)))))
(depth (lambda () (length stack)))
;; traverse: 'a ->
(traverse
(lambda (x)
(push x)
(let ((d (depth)))
(set-N x d)
(hash-table-put! results x (f- x))
(for-each (lambda (y)
(if (= 0 (get-N y))
(traverse y))
(hash-table-put! results
x
(union (f x) (f y)))
(set-N x (min (get-N x) (get-N y))))
(edges x))
(if (= d (get-N x))
(let loop ((p (pop)))
(set-N p +inf.0)
(hash-table-put! results p (f x))
(if (not (eq? x p))
(loop (pop))))))))]
(for-each (lambda (x)
(if (= 0 (get-N x))
(traverse x)))
nodes)
(if (= 0 (get-N x))
(traverse x)))
nodes)
f))
)

@ -38,7 +38,7 @@
;; output term set is represented in bit-vector form
(define (compute-read a g)
(let* ((dr (compute-DR a g))
(reads (compute-reads a g)))
(reads (compute-reads a g)))
(digraph-tk->terml (send a get-mapped-non-term-keys)
reads
dr
@ -127,13 +127,12 @@
;; output term set is represented in bit-vector form
(define (compute-LA a g)
(let* ((includes (compute-includes a g))
(lookback (compute-lookback a g))
(follow (compute-follow a g includes)))
(lookback (compute-lookback a g))
(follow (compute-follow a g includes)))
(lambda (k p)
(let* ((l (lookback k p))
(f (map follow l)))
(apply bitwise-ior (cons 0 f))))))
(let* ((l (lookback k p))
(f (map follow l)))
(apply bitwise-ior (cons 0 f))))))
(define (print-DR dr a g)
(print-input-st-sym dr "DR" a g print-output-terms))
@ -192,8 +191,8 @@
(map
(lambda (p)
(list
(kernel-index (trans-key-st p))
(gram-sym-symbol (trans-key-gs p))))
(kernel-index (trans-key-st p))
(gram-sym-symbol (trans-key-gs p))))
r))
;; init-tk-map : int -> (vectorof hashtable?)
@ -230,52 +229,49 @@
;; Computes (f x) = (f- x) union Union{(f y) | y in (edges x)}
;; A specialization of digraph in the file graph.rkt
(define (digraph-tk->terml nodes edges f- num-states)
(letrec (
;; Will map elements of trans-key to term sets represented as bit vectors
(results (init-tk-map num-states))
(letrec [
;; Will map elements of trans-key to term sets represented as bit vectors
(results (init-tk-map num-states))
;; Maps elements of trans-keys to integers.
(N (init-tk-map num-states))
;; Maps elements of trans-keys to integers.
(N (init-tk-map num-states))
(get-N (lookup-tk-map N))
(set-N (add-tk-map N))
(get-f (lookup-tk-map results))
(set-f (add-tk-map results))
(set-N (add-tk-map N))
(get-f (lookup-tk-map results))
(set-f (add-tk-map results))
(stack null)
(push (lambda (x)
(set! stack (cons x stack))))
(pop (lambda ()
(stack null)
(push (lambda (x)
(set! stack (cons x stack))))
(pop (lambda ()
(begin0
(car stack)
(set! stack (cdr stack)))))
(depth (lambda () (length stack)))
(car stack)
(set! stack (cdr stack)))))
(depth (lambda () (length stack)))
;; traverse: 'a ->
(traverse
(lambda (x)
(push x)
(let ((d (depth)))
(set-N x d)
(set-f x (f- x))
(for-each (lambda (y)
(when (= 0 (get-N y))
;; traverse: 'a ->
(traverse
(lambda (x)
(push x)
(let ((d (depth)))
(set-N x d)
(set-f x (f- x))
(for-each (lambda (y)
(when (= 0 (get-N y))
(traverse y))
(set-f x (bitwise-ior (get-f x) (get-f y)))
(set-N x (min (get-N x) (get-N y))))
(edges x))
(when (= d (get-N x))
(set-f x (bitwise-ior (get-f x) (get-f y)))
(set-N x (min (get-N x) (get-N y))))
(edges x))
(when (= d (get-N x))
(let loop ((p (pop)))
(set-N p +inf.0)
(set-f p (get-f x))
(unless (equal? x p)
(loop (pop)))))))))
(loop (pop))))))))]
(for-each (lambda (x)
(when (= 0 (get-N x))
(when (= 0 (get-N x))
(traverse x)))
nodes)
nodes)
get-f))
)

@ -62,9 +62,9 @@
;; (listof (cons/c trans-key? (listof kernel?)))
(define (reverse-assoc assoc)
(let ((reverse-hash (make-hash-table 'equal))
(hash-table-add!
(lambda (ht k v)
(hash-table-put! ht k (cons v (hash-table-get ht k (lambda () null)))))))
(hash-table-add!
(lambda (ht k v)
(hash-table-put! ht k (cons v (hash-table-get ht k (lambda () null)))))))
(for-each
(lambda (trans-key/kernel)
(let ((tk (car trans-key/kernel)))
@ -99,13 +99,13 @@
(define mapped-non-terms (map car non-term-assoc))
(define/public (get-mapped-non-term-keys)
mapped-non-terms)
mapped-non-terms)
(define/public (get-num-states)
(vector-length states))
(define/public (get-epsilon-trans)
epsilons)
epsilons)
(define/public (get-transitions)
(append term-assoc non-term-assoc))
@ -113,12 +113,12 @@
;; for-each-state : (state ->) ->
;; Iteration over the states in an automaton
(define/public (for-each-state f)
(let ((num-states (vector-length states)))
(let loop ((i 0))
(if (< i num-states)
(begin
(f (vector-ref states i))
(loop (add1 i)))))))
(let ((num-states (vector-length states)))
(let loop ((i 0))
(if (< i num-states)
(begin
(f (vector-ref states i))
(loop (add1 i)))))))
;; run-automaton: kernel? gram-sym? -> (union kernel #f)
;; returns the state reached from state k on input s, or #f when k
@ -131,7 +131,7 @@
;; run-automaton-back : (listof kernel?) gram-sym? -> (listof kernel)
;; returns the list of states that can reach k by transitioning on s.
(define/public (run-automaton-back k s)
(apply append
(apply append
(map
(lambda (k)
(hash-table-get (vector-ref reverse-transitions (kernel-index k))
@ -141,18 +141,18 @@
(define (union comp<?)
(letrec ((union
(lambda (l1 l2)
(cond
((null? l1) l2)
((null? l2) l1)
(else (let ((c1 (car l1))
(c2 (car l2)))
(cond
((comp<? c1 c2)
(cons c1 (union (cdr l1) l2)))
((comp<? c2 c1)
(cons c2 (union l1 (cdr l2))))
(else (union (cdr l1) l2)))))))))
(lambda (l1 l2)
(cond
((null? l1) l2)
((null? l2) l1)
(else (let ((c1 (car l1))
(c2 (car l2)))
(cond
((comp<? c1 c2)
(cons c1 (union (cdr l1) l2)))
((comp<? c2 c1)
(cons c2 (union l1 (cdr l2))))
(else (union (cdr l1) l2)))))))))
union))
@ -160,141 +160,141 @@
;; That is (equal? a b) <=> (eq? a b)
(define (kernel->string k)
(apply string-append
`("{" ,@(map (lambda (i) (string-append (item->string i) ", "))
(kernel-items k))
"}")))
`("{" ,@(map (lambda (i) (string-append (item->string i) ", "))
(kernel-items k))
"}")))
;; build-LR0-automaton: grammar -> LR0-automaton
;; Constructs the kernels of the sets of LR(0) items of g
(define (build-lr0-automaton grammar)
; (printf "LR(0) automaton:\n")
(letrec (
(epsilons (make-hash-table 'equal))
(grammar-symbols (append (send grammar get-non-terms)
(epsilons (make-hash-table 'equal))
(grammar-symbols (append (send grammar get-non-terms)
(send grammar get-terms)))
;; first-non-term: non-term -> non-term list
;; given a non-terminal symbol C, return those non-terminal
;; symbols A s.t. C -> An for some string of terminals and
;; non-terminals n where -> means a rightmost derivation in many
;; steps. Assumes that each non-term can be reduced to a string
;; of terms.
(first-non-term
(digraph (send grammar get-non-terms)
(lambda (nt)
(filter non-term?
(map (lambda (prod)
(sym-at-dot (make-item prod 0)))
(send grammar get-prods-for-non-term nt))))
(lambda (nt) (list nt))
(union non-term<?)
(lambda () null)))
;; closure: LR1-item list -> LR1-item list
;; Creates a set of items containing i s.t. if A -> n.Xm is in it,
;; X -> .o is in it too.
(LR0-closure
(lambda (i)
(cond
((null? i) null)
(else
(let ((next-gsym (sym-at-dot (car i))))
(cond
((non-term? next-gsym)
(cons (car i)
(append
(apply append
(map (lambda (non-term)
(map (lambda (x)
(make-item x 0))
(send grammar
;; first-non-term: non-term -> non-term list
;; given a non-terminal symbol C, return those non-terminal
;; symbols A s.t. C -> An for some string of terminals and
;; non-terminals n where -> means a rightmost derivation in many
;; steps. Assumes that each non-term can be reduced to a string
;; of terms.
(first-non-term
(digraph (send grammar get-non-terms)
(lambda (nt)
(filter non-term?
(map (lambda (prod)
(sym-at-dot (make-item prod 0)))
(send grammar get-prods-for-non-term nt))))
(lambda (nt) (list nt))
(union non-term<?)
(lambda () null)))
;; closure: LR1-item list -> LR1-item list
;; Creates a set of items containing i s.t. if A -> n.Xm is in it,
;; X -> .o is in it too.
(LR0-closure
(lambda (i)
(cond
((null? i) null)
(else
(let ((next-gsym (sym-at-dot (car i))))
(cond
((non-term? next-gsym)
(cons (car i)
(append
(apply append
(map (lambda (non-term)
(map (lambda (x)
(make-item x 0))
(send grammar
get-prods-for-non-term
non-term)))
(first-non-term next-gsym)))
(LR0-closure (cdr i)))))
(else
(cons (car i) (LR0-closure (cdr i))))))))))
(first-non-term next-gsym)))
(LR0-closure (cdr i)))))
(else
(cons (car i) (LR0-closure (cdr i))))))))))
;; maps trans-keys to kernels
(automaton-term null)
;; maps trans-keys to kernels
(automaton-term null)
(automaton-non-term null)
;; keeps the kernels we have seen, so we can have a unique
;; list for each kernel
(kernels (make-hash-table 'equal))
(counter 0)
;; goto: LR1-item list -> LR1-item list list
;; creates new kernels by moving the dot in each item in the
;; LR0-closure of kernel to the right, and grouping them by
;; the term/non-term moved over. Returns the kernels not
;; yet seen, and places the trans-keys into automaton
(goto
(lambda (kernel)
(let (
;; maps a gram-syms to a list of items
(table (make-hash-table))
;; add-item!:
;; (symbol (listof item) hashtable) item? ->
;; adds i into the table grouped with the grammar
;; symbol following its dot
(add-item!
(lambda (table i)
(let ((gs (sym-at-dot i)))
(cond
(gs
(let ((already
;; keeps the kernels we have seen, so we can have a unique
;; list for each kernel
(kernels (make-hash-table 'equal))
(counter 0)
;; goto: LR1-item list -> LR1-item list list
;; creates new kernels by moving the dot in each item in the
;; LR0-closure of kernel to the right, and grouping them by
;; the term/non-term moved over. Returns the kernels not
;; yet seen, and places the trans-keys into automaton
(goto
(lambda (kernel)
(let (
;; maps a gram-syms to a list of items
(table (make-hash-table))
;; add-item!:
;; (symbol (listof item) hashtable) item? ->
;; adds i into the table grouped with the grammar
;; symbol following its dot
(add-item!
(lambda (table i)
(let ((gs (sym-at-dot i)))
(cond
(gs
(let ((already
(hash-table-get table
(gram-sym-symbol gs)
(lambda () null))))
(unless (member i already)
(unless (member i already)
(hash-table-put! table
(gram-sym-symbol gs)
(cons i already)))))
((= 0 (vector-length (prod-rhs (item-prod i))))
(let ((current (hash-table-get epsilons
kernel
(lambda () null))))
(hash-table-put! epsilons
kernel
(cons i current)))))))))
;; Group the items of the LR0 closure of the kernel
;; by the character after the dot
(for-each (lambda (item)
(add-item! table item))
(LR0-closure (kernel-items kernel)))
;; each group is a new kernel, with the dot advanced.
;; sorts the items in a kernel so kernels can be compared
;; with equal? for using the table kernels to make sure
;; only one representitive of each kernel is created
(filter
(lambda (x) x)
(map
(lambda (i)
(let* ((gs (car i))
(items (cadr i))
(new #f)
(new-kernel (sort
(filter (lambda (x) x)
(map move-dot-right items))
item<?))
(unique-kernel (hash-table-get
kernels
new-kernel
(lambda ()
(let ((k (make-kernel
new-kernel
counter)))
(set! new #t)
(set! counter (add1 counter))
(hash-table-put! kernels
new-kernel
k)
k)))))
((= 0 (vector-length (prod-rhs (item-prod i))))
(let ((current (hash-table-get epsilons
kernel
(lambda () null))))
(hash-table-put! epsilons
kernel
(cons i current)))))))))
;; Group the items of the LR0 closure of the kernel
;; by the character after the dot
(for-each (lambda (item)
(add-item! table item))
(LR0-closure (kernel-items kernel)))
;; each group is a new kernel, with the dot advanced.
;; sorts the items in a kernel so kernels can be compared
;; with equal? for using the table kernels to make sure
;; only one representitive of each kernel is created
(filter
(lambda (x) x)
(map
(lambda (i)
(let* ((gs (car i))
(items (cadr i))
(new #f)
(new-kernel (sort
(filter (lambda (x) x)
(map move-dot-right items))
item<?))
(unique-kernel (hash-table-get
kernels
new-kernel
(lambda ()
(let ((k (make-kernel
new-kernel
counter)))
(set! new #t)
(set! counter (add1 counter))
(hash-table-put! kernels
new-kernel
k)
k)))))
(cond
((term? gs)
(set! automaton-term (cons (cons (make-trans-key kernel gs)
@ -305,14 +305,14 @@
unique-kernel)
automaton-non-term))))
#;(printf "~a -> ~a on ~a\n"
(kernel->string kernel)
(kernel->string unique-kernel)
(gram-sym-symbol gs))
(if new
unique-kernel
#f)))
(let loop ((gsyms grammar-symbols))
(cond
(kernel->string kernel)
(kernel->string unique-kernel)
(gram-sym-symbol gs))
(if new
unique-kernel
#f)))
(let loop ((gsyms grammar-symbols))
(cond
((null? gsyms) null)
(else
(let ((items (hash-table-get table
@ -327,29 +327,29 @@
(starts
(map (lambda (init-prod) (list (make-item init-prod 0)))
(send grammar get-init-prods)))
(startk
(startk
(map (lambda (start)
(let ((k (make-kernel start counter)))
(hash-table-put! kernels start k)
(set! counter (add1 counter))
k))
starts))
(new-kernels (make-queue)))
(new-kernels (make-queue)))
(let loop ((old-kernels startk)
(seen-kernels null))
(cond
((and (empty-queue? new-kernels) (null? old-kernels))
(make-object lr0%
automaton-term
automaton-non-term
(list->vector (reverse seen-kernels))
epsilons))
((null? old-kernels)
(loop (deq! new-kernels) seen-kernels))
(else
(enq! new-kernels (goto (car old-kernels)))
(loop (cdr old-kernels) (cons (car old-kernels) seen-kernels)))))))
(seen-kernels null))
(cond
((and (empty-queue? new-kernels) (null? old-kernels))
(make-object lr0%
automaton-term
automaton-non-term
(list->vector (reverse seen-kernels))
epsilons))
((null? old-kernels)
(loop (deq! new-kernels) seen-kernels))
(else
(enq! new-kernels (goto (car old-kernels)))
(loop (cdr old-kernels) (cons (car old-kernels) seen-kernels)))))))
(define-struct q (f l) (make-inspector))
(define (empty-queue? q)
@ -358,12 +358,12 @@
(make-q null null))
(define (enq! q i)
(if (empty-queue? q)
(let ((i (mcons i null)))
(set-q-l! q i)
(set-q-f! q i))
(begin
(set-mcdr! (q-l q) (mcons i null))
(set-q-l! q (mcdr (q-l q))))))
(let ((i (mcons i null)))
(set-q-l! q i)
(set-q-f! q i))
(begin
(set-mcdr! (q-l q) (mcons i null))
(set-q-l! q (mcdr (q-l q))))))
(define (deq! q)
(begin0
(mcar (q-f q))

Loading…
Cancel
Save