*** empty log message ***

original commit: 5da545dd89283fd1586b58262df29697900d37ff
tokens
Scott Owens 21 years ago
parent e6af00242c
commit 1bab38b019

@ -16,7 +16,7 @@
;; An re is either
;; - (make-epsilonR bool nat)
;; - (make-zeroR bool nat)
;; - (make-char-setR bool nat (list-of char)) The list must be sorted
;; - (make-char-setR bool nat char-set)
;; - (make-concatR bool nat re re)
;; - (make-repeatR bool nat re)
;; - (make-orR bool nat (list-of re)) Must not directly contain any orRs
@ -64,7 +64,7 @@
;; ->re : s-re cache -> re
(define (->re exp cache)
(match exp
((? char?) (build-char-set (list exp) cache))
((? char?) (build-char-set (make-range (char->integer exp) (char->integer exp)) cache))
((? string?) (->re `(@ ,@(string->list exp)) cache))
((? re?) exp)
(`(epsilon) (build-epsilon))
@ -103,7 +103,7 @@
(`(^ ,crs ...)
(let ((cs (->re `(: ,@crs) cache)))
(cond
((zeroR? cs) (build-char-set (make-range 0 255) cache))
((zeroR? cs) (build-char-set (make-range 0 (sub1 (expt 2 32))) cache))
((char-setR? cs)
(build-char-set
(let loop ((bad-chars (map char->integer

@ -106,75 +106,205 @@
null)
'(5 1 2 3 4 1 2 3 2 1)))
;; make-range : int * int -> char list
;; creates a list of all chars between i and j. i <= j
;; A char-set is (list-of (cons nat nat))
;; Each cons represents a range of characters, and the entire
;; set is the union of the ranges. The ranges must be disjoint and
;; increasing. Further, adjacent ranges must have at least
;; one number between them.
(define (nat? x)
(and (integer? x) (exact? x) (>= x 0)))
;; char-set? : X -> bool
(define (char-set? x)
(let loop ((set x)
(current-num -2))
(or
(null? set)
(and (pair? set)
(pair? (car set))
(nat? (caar set))
(nat? (cdar set))
(< (add1 current-num) (caar set))
(<= (caar set) (cdar set))
(loop (cdr set) (cdar set))))))
(test-block ()
((char-set? '((0 . 4) (7 . 9))) #t)
((char-set? '((-1 . 4))) #f)
((char-set? '((11 . 10))) #f)
((char-set? '((0 . 10) (8 . 12))) #f)
((char-set? '((10 . 20) (1 . 2))) #f)
((char-set? '((1 . 1))) #t)
((char-set? '((1 . 1) (2 . 3))) #f)
((char-set? '((1 . 1) (3 . 3))) #t)
((char-set? null) #t))
;; make-range : int * int -> char-set
;; creates a set of chars between i and j. i <= j
(define (make-range i j)
(letrec ((make-range
(lambda (i j)
(cond
((= i j) (list (integer->char i)))
(else
(cons (integer->char i) (make-range (add1 i) j)))))))
(make-range i j)))
(list (cons i j)))
(test-block ()
((make-range 97 110) (string->list "abcdefghijklmn"))
((make-range 111 111) '(#\o)))
((make-range 97 110) '((97 . 110)))
((make-range 111 111) '((111 . 111))))
;; merge : (list-of char) (list-of char) -> (list-of char)
;; Combines 2 sorted, duplicate-free lists into 1, removing duplicates.
(define (merge l1 l2)
;; sub-range? : (cons int int) (cons int int) -> bool
;; true iff the interval [(car r1), (cdr r1)] is a subset of
;; [(car r2), (cdr r2)]
(define (sub-range? r1 r2)
(and (>= (car r1) (car r2))
(<= (cdr r1) (cdr r2))))
;; overlap? : (cons int int) (cons int int) -> bool
;; true iff the intervals [(car r1), (cdr r1)] and [(car r2), (cdr r2)]
;; have non-empty intersections and (car r1) >= (car r2)
(define (overlap? r1 r2)
(and (>= (car r1) (car r2))
(>= (cdr r1) (cdr r2))
(<= (car r1) (cdr r2))))
;; merge : char-set char-set -> char-set
;; unions 2 char-sets
(define (merge s1 s2)
(cond
((null? l2) l1)
((null? l1) l2)
(else (let ((cl1 (car l1))
(cl2 (car l2)))
(cond
((> (char->integer cl1) (char->integer cl2))
(cons cl2 (merge l1 (cdr l2))))
((< (char->integer cl1) (char->integer cl2))
(cons cl1 (merge (cdr l1) l2)))
(else (merge (cdr l1) l2)))))))
((null? s2) s1)
((null? s1) s2)
(else
(let ((r1 (car s1))
(r2 (car s2)))
(cond
((sub-range? r1 r2) (merge (cdr s1) s2))
((sub-range? r2 r1) (merge s1 (cdr s2)))
((or (overlap? r1 r2) (= (car r1) (add1 (cdr r2))))
(merge (cons (cons (car r2) (cdr r1)) (cdr s1)) (cdr s2)))
((or (overlap? r2 r1) (= (car r2) (add1 (cdr r1))))
(merge (cdr s1) (cons (cons (car r1) (cdr r2)) (cdr s2))))
((< (car r1) (car r2))
(cons r1 (merge (cdr s1) s2)))
(else
(cons r2 (merge s1 (cdr s2)))))))))
(test-block ()
((merge (string->list "abcd")
(string->list "abde"))
(string->list "abcde"))
((merge null null) null)
((merge null '(#\1)) '(#\1))
((merge '(#\1) null) '(#\1)))
(define (split-acc l1 l2 i l1-i l2-i)
(cond
((null? l1) (values (reverse! i) (reverse! l1-i) (reverse! (append! (reverse l2) l2-i))))
((null? l2) (values (reverse! i) (reverse! (append! (reverse l1) l1-i)) (reverse! l2-i)))
(else (let ((cl1 (car l1))
(cl2 (car l2)))
(cond
((> (char->integer cl1) (char->integer cl2))
(split-acc l1 (cdr l2) i l1-i (cons cl2 l2-i)))
((< (char->integer cl1) (char->integer cl2))
(split-acc (cdr l1) l2 i (cons cl1 l1-i) l2-i))
(else
(split-acc (cdr l1) (cdr l2) (cons cl1 i) l1-i l2-i)))))))
;; split : (list-of char) (list-of char) -> (list-of char) (list-of char) (list-of char)
;; Takes sorted, duplicate-free l1 and l2 and returns (l1 intersect l2),
;; l1 - (l1 intersect l2) and l2 - (l1 intersect l2)
(define (split l1 l2)
(split-acc l1 l2 null null null))
((merge null '((1 . 10))) '((1 . 10)))
((merge '((1 . 10)) null) '((1 . 10)))
;; r1 in r2
((merge '((5 . 10)) '((5 . 10))) '((5 . 10)))
((merge '((6 . 9)) '((5 . 10))) '((5 . 10)))
((merge '((7 . 7)) '((5 . 10))) '((5 . 10)))
;; r2 in r1
((merge '((5 . 10)) '((5 . 10))) '((5 . 10)))
((merge '((5 . 10)) '((6 . 9))) '((5 . 10)))
((merge '((5 . 10)) '((7 . 7))) '((5 . 10)))
;; r2 and r1 are disjoint
((merge '((5 . 10)) '((12 . 14))) '((5 . 10) (12 . 14)))
((merge '((12 . 14)) '((5 . 10))) '((5 . 10) (12 . 14)))
;; r1 and r1 are adjacent
((merge '((5 . 10)) '((11 . 13))) '((5 . 13)))
((merge '((11 . 13)) '((5 . 10))) '((5 . 13)))
;; r1 and r2 overlap
((merge '((5 . 10)) '((7 . 14))) '((5 . 14)))
((merge '((7 . 14)) '((5 . 10))) '((5 . 14)))
((merge '((5 . 10)) '((10 . 14))) '((5 . 14)))
((merge '((7 . 10)) '((5 . 7))) '((5 . 10)))
;; with lists
((merge '((1 . 1) (3 . 3) (5 . 10) (100 . 200))
'((2 . 2) (10 . 12) (300 . 300)))
'((1 . 3) (5 . 12) (100 . 200) (300 . 300)))
((merge '((1 . 1) (3 . 3) (5 . 5) (8 . 8) (10 . 10) (12 . 12))
'((2 . 2) (4 . 4) (6 . 7) (9 . 9) (11 . 11)))
'((1 . 12)))
((merge '((2 . 2) (4 . 4) (6 . 7) (9 . 9) (11 . 11))
'((1 . 1) (3 . 3) (5 . 5) (8 . 8) (10 . 10) (12 . 12)))
'((1 . 12))))
;; split-sub-range : (cons int int) (cons int int) -> char-set
;; (subrange? r1 r2) must hold.
;; returns [(car r2), (cdr r2)] - ([(car r1), (cdr r1)] intersect [(car r2), (cdr r2)]).
(define (split-sub-range r1 r2)
(let ((r1-car (car r1))
(r1-cdr (cdr r1))
(r2-car (car r2))
(r2-cdr (cdr r2)))
(cond
((and (= r1-car r2-car) (= r1-cdr r2-cdr)) null)
((= r1-car r2-car) (list (cons (add1 r1-cdr) r2-cdr)))
((= r1-cdr r2-cdr) (list (cons r2-car (sub1 r1-car))))
(else
(list (cons r2-car (sub1 r1-car)) (cons (add1 r1-cdr) r2-cdr))))))
(test-block ()
((let-values (((a b c)
(split (string->list "abcdghjkl")
(string->list "abdeijmn"))))
(list a b c))
(list (string->list "abdj") (string->list "cghkl") (string->list "eimn")))
((let-values (((a b c) (split null null)))
(list a b c)) (list null null null))
((let-values (((a b c) (split '(#\1) null)))
(list a b c)) (list null '(#\1) null))
((let-values (((a b c) (split null '(#\1))))
(list a b c)) (list null null '(#\1))))
((split-sub-range '(1 . 10) '(1 . 10)) '())
((split-sub-range '(1 . 5) '(1 . 10)) '((6 . 10)))
((split-sub-range '(2 . 10) '(1 . 10)) '((1 . 1)))
((split-sub-range '(2 . 5) '(1 . 10)) '((1 . 1) (6 . 10))))
(define (split-acc s1 s2 i s1-i s2-i)
(cond
((null? s1) (values (reverse! i) (reverse! s1-i) (reverse! (append! (reverse s2) s2-i))))
((null? s2) (values (reverse! i) (reverse! (append! (reverse s1) s1-i)) (reverse! s2-i)))
(else
(let ((r1 (car s1))
(r2 (car s2)))
(cond
((sub-range? r1 r2)
(split-acc (cdr s1) (append (split-sub-range r1 r2) (cdr s2))
(cons r1 i) s1-i s2-i))
((sub-range? r2 r1)
(split-acc (append (split-sub-range r2 r1) (cdr s1)) (cdr s2)
(cons r2 i) s1-i s2-i))
((overlap? r1 r2)
(split-acc (cons (cons (add1 (cdr r2)) (cdr r1)) (cdr s1))
(cdr s2)
(cons (cons (car r1) (cdr r2)) i)
s1-i
(cons (cons (car r2) (sub1 (car r1))) s2-i)))
((overlap? r2 r1)
(split-acc (cdr s1)
(cons (cons (add1 (cdr r1)) (cdr r2)) (cdr s2))
(cons (cons (car r2) (cdr r1)) i)
(cons (cons (car r1) (sub1 (car r2)))s1-i )
s2-i))
((< (car r1) (car r2))
(split-acc (cdr s1) s2 i (cons r1 s1-i) s2-i))
(else
(split-acc s1 (cdr s2) i s1-i (cons r2 s2-i))))))))
;; split : char-set -> char-set char-set char-set
;; returns (l1 intersect l2), l1 - (l1 intersect l2) and l2 - (l1 intersect l2)
(define (split s1 s2)
(split-acc s1 s2 null null null))
(test-block ((s (lambda (s1 s2)
(call-with-values (lambda () (split s1 s2)) list))))
((s null null) '(() () ()))
((s '((1 . 10)) null) '(() ((1 . 10)) ()))
((s null '((1 . 10))) '(() () ((1 . 10))))
((s '((1 . 10)) null) '(() ((1 . 10)) ()))
((s '((1 . 10)) '((1 . 10))) '(((1 . 10)) () ()))
((s '((1 . 10)) '((2 . 5))) '(((2 . 5)) ((1 . 1) (6 . 10)) ()))
((s '((2 . 5)) '((1 . 10))) '(((2 . 5)) () ((1 . 1) (6 . 10))))
((s '((2 . 5)) '((5 . 10))) '(((5 . 5)) ((2 . 4)) ((6 . 10))))
((s '((5 . 10)) '((2 . 5))) '(((5 . 5)) ((6 . 10)) ((2 . 4))))
((s '((2 . 10)) '((5 . 14))) '(((5 . 10)) ((2 . 4)) ((11 . 14))))
((s '((5 . 14)) '((2 . 10))) '(((5 . 10)) ((11 . 14)) ((2 . 4))))
((s '((10 . 20)) '((30 . 50))) '(() ((10 . 20)) ((30 . 50))))
((s '((100 . 200)) '((30 . 50))) '(() ((100 . 200)) ((30 . 50))))
((s '((1 . 5) (7 . 9) (100 . 200) (500 . 600) (600 . 700))
'((2 . 8) (50 . 60) (101 . 104) (105 . 220)))
'(((2 . 5) (7 . 8) (101 . 104) (105 . 200))
((1 . 1) (9 . 9) (100 . 100) (500 . 600) (600 . 700))
((6 . 6) (50 . 60) (201 . 220))))
((s '((2 . 8) (50 . 60) (101 . 104) (105 . 220))
'((1 . 5) (7 . 9) (100 . 200) (500 . 600) (600 . 700)))
'(((2 . 5) (7 . 8) (101 . 104) (105 . 200))
((6 . 6) (50 . 60) (201 . 220))
((1 . 1) (9 . 9) (100 . 100) (500 . 600) (600 . 700))))
)
)
Loading…
Cancel
Save