Binary parsing

Goals

o JPEG, TIFF, AIFF, MP3, ELF,. ..

e Research in (text) compression

e RPC, IIOP, RMI, DNS, SLP,...

e ASN.1 (LDAP, X.509)



Binary parsing and unparsing are transformations be-
tween primitive or composite Scheme values and their
external binary representations.

Examples include reading and writing JPEG, TIFF, ELF
file formats, communicating with DNS, Kerberos, LDAP,
SLP internet services, participating in Sun RPC and
CORBA/IIOP distributed systems, storing and retriev-
ing (arrays of) floating-point numbers in a portable and
efficient way. The talk will propose a set of low- and
intermediate- level procedures that make binary parsing
possible.

Scheme is a good language to do research in text com-
pression. Text compression involves a great deal of
building and traversing dictionaries, trees and similar
data structures, where Scheme excels. Performance
doesn’t matter in research, but the size of compressed
files does (to figure out the bpc for the common bench-
marks). Variable-bit i/o is necessary.

ASN.1 corresponds to a higher-level parsing (LR parser
vs. lexer). Information in LDAP responses and X.509
certificates is structural and recursive, and so lends itself
to be processed in Scheme. Variable bit i/0 is necessary,
and so is a binary lexer for a LR parser. Parsing of ASN.1
is a highly profitable enterprise.

1-1



Primitives and streams

read-byte (cf. read-char)
(eqv? (char->integer (read-char)) (read-byte))
= 7

read-u8vector (cf. read-string)

with-input-from-u8vector, with-input-from-
encoded-u8vector ’baseb4,. . .

read-bit, read-bits
via overlayed streams given read-byte

mmap-udvector, munmap-udvector



Scheme has a character datatype, and a collection of
characters: a string. There are procedures that read/write
characters and strings, perform conversions between na-
tive Scheme datatypes and strings, and strings and col-
lections of Scheme datatypes (parsing/unparsing, from
trivial to advanced).

Currently all binary i/o has to make this assumption,
which does not hold in general, for example, if an input
file is in Unicode.

Read-byte is a fundamental primitive; it needs to be
added to the standard. Most of the other functions are
library procedures. They are:

read-u8vector, which is similar to common procedures
read-line or read-string. Note read-u8vector can be
quite useful to copy data from one port to another:
it's far more efficient to copy data in large chunks with-
out any interpretation of separate bytes (e.g., without
interpreting bytes as Unicode characters).

with-input-from-u8vector, with-output-to-u8vector: build-
ing binary i/o streams from a sequence of bytes. Streams
over u8vector, ulévector, etc. provide a serial access to
memory.

mmap-u8vector, munmap-u8vector: This is the single
pair of procedures that is OS-specific, although mapped
memory has become nearly pervasive. These procedures
are to deal with memory-mapped files, shared memory,
PCI space, and other hardware resources. A Scheme

2-1



system must verify that the mapped memory does not
overlap any of the segments of the Scheme system itself
(that is easy to do: just ask for a private mapping,
and the OS will do copy-on-write). We can associate
a binary stream with the mapped piece of memory to
handle marshaling.



Conversions

u8vector—integer u8vector endianness
u8vector—sinteger u8vector endianness

ud8vector-reverse,. . .

modf, frexp, ldexp



Here are proposed conversion procedures, from a se-
quence of bytes to an unsigned or signed integer, mind-
ing the byte order. The u8vector in question can have
size 1,2,4,8, 3 etc. bytes. These two functions there-
fore can be used to read shorts, longs, extra longs, etc.
numbers.

udvector-reverse and other useful u8vector operations

modf, frexp, ldexp primitives— all can be emulated in
Scheme, yet they are quite handy (for portable FP ma-
nipulation) and can be executed very efficiently by an
FPU.

3-1



Higher-level parsing and combinators

e Skip-bits, next-u8token,. ..

e IIOP, RPC/XDR, RMI

e binary lexer for existing LR/LL-parsers



The above were primitives and simple conversion op-
erations. This slide introduces combinators that can
compose primitives for more complex (possibly itera-
tive) actions. That's where Scheme’s ability to handle
higher-order functions will shine. The composition of
primitives and combinators will represent binary parsing
language in a _full_ notation. This is similar to XPath
expressions in full notation.

Later we need to find out the most-frequently used pat-
terns of the binary parsing language and design an ab-
breviated notation. The latter will need a special "in-
terpreter". The abbreviated notation may turn out to
look like Olin’s regular expressions.

4-1



