var assert = require("assert"); var types = require("./types"); var n = types.namedTypes; var b = types.builders; var isNumber = types.builtInTypes.number; var isArray = types.builtInTypes.array; var Path = require("./path"); var Scope = require("./scope"); function NodePath(value, parentPath, name) { assert.ok(this instanceof NodePath); Path.call(this, value, parentPath, name); } require("util").inherits(NodePath, Path); var NPp = NodePath.prototype; Object.defineProperties(NPp, { node: { get: function() { Object.defineProperty(this, "node", { configurable: true, // Enable deletion. value: this._computeNode() }); return this.node; } }, parent: { get: function() { Object.defineProperty(this, "parent", { configurable: true, // Enable deletion. value: this._computeParent() }); return this.parent; } }, scope: { get: function() { Object.defineProperty(this, "scope", { configurable: true, // Enable deletion. value: this._computeScope() }); return this.scope; } } }); NPp.replace = function() { delete this.node; delete this.parent; delete this.scope; return Path.prototype.replace.apply(this, arguments); }; NPp.prune = function() { var remainingNodePath = this.parent; this.replace(); return cleanUpNodesAfterPrune(remainingNodePath); }; // The value of the first ancestor Path whose value is a Node. NPp._computeNode = function() { var value = this.value; if (n.Node.check(value)) { return value; } var pp = this.parentPath; return pp && pp.node || null; }; // The first ancestor Path whose value is a Node distinct from this.node. NPp._computeParent = function() { var value = this.value; var pp = this.parentPath; if (!n.Node.check(value)) { while (pp && !n.Node.check(pp.value)) { pp = pp.parentPath; } if (pp) { pp = pp.parentPath; } } while (pp && !n.Node.check(pp.value)) { pp = pp.parentPath; } return pp || null; }; // The closest enclosing scope that governs this node. NPp._computeScope = function() { var value = this.value; var pp = this.parentPath; var scope = pp && pp.scope; if (n.Node.check(value) && Scope.isEstablishedBy(value)) { scope = new Scope(this, scope); } return scope || null; }; NPp.getValueProperty = function(name) { return types.getFieldValue(this.value, name); }; /** * Determine whether this.node needs to be wrapped in parentheses in order * for a parser to reproduce the same local AST structure. * * For instance, in the expression `(1 + 2) * 3`, the BinaryExpression * whose operator is "+" needs parentheses, because `1 + 2 * 3` would * parse differently. * * If assumeExpressionContext === true, we don't worry about edge cases * like an anonymous FunctionExpression appearing lexically first in its * enclosing statement and thus needing parentheses to avoid being parsed * as a FunctionDeclaration with a missing name. */ NPp.needsParens = function(assumeExpressionContext) { var pp = this.parentPath; if (!pp) { return false; } var node = this.value; // Only expressions need parentheses. if (!n.Expression.check(node)) { return false; } // Identifiers never need parentheses. if (node.type === "Identifier") { return false; } while (!n.Node.check(pp.value)) { pp = pp.parentPath; if (!pp) { return false; } } var parent = pp.value; switch (node.type) { case "UnaryExpression": case "SpreadElement": case "SpreadProperty": return parent.type === "MemberExpression" && this.name === "object" && parent.object === node; case "BinaryExpression": case "LogicalExpression": switch (parent.type) { case "CallExpression": return this.name === "callee" && parent.callee === node; case "UnaryExpression": case "SpreadElement": case "SpreadProperty": return true; case "MemberExpression": return this.name === "object" && parent.object === node; case "BinaryExpression": case "LogicalExpression": var po = parent.operator; var pp = PRECEDENCE[po]; var no = node.operator; var np = PRECEDENCE[no]; if (pp > np) { return true; } if (pp === np && this.name === "right") { assert.strictEqual(parent.right, node); return true; } default: return false; } case "SequenceExpression": switch (parent.type) { case "ForStatement": // Although parentheses wouldn't hurt around sequence // expressions in the head of for loops, traditional style // dictates that e.g. i++, j++ should not be wrapped with // parentheses. return false; case "ExpressionStatement": return this.name !== "expression"; default: // Otherwise err on the side of overparenthesization, adding // explicit exceptions above if this proves overzealous. return true; } case "YieldExpression": switch (parent.type) { case "BinaryExpression": case "LogicalExpression": case "UnaryExpression": case "SpreadElement": case "SpreadProperty": case "CallExpression": case "MemberExpression": case "NewExpression": case "ConditionalExpression": case "YieldExpression": return true; default: return false; } case "Literal": return parent.type === "MemberExpression" && isNumber.check(node.value) && this.name === "object" && parent.object === node; case "AssignmentExpression": case "ConditionalExpression": switch (parent.type) { case "UnaryExpression": case "SpreadElement": case "SpreadProperty": case "BinaryExpression": case "LogicalExpression": return true; case "CallExpression": return this.name === "callee" && parent.callee === node; case "ConditionalExpression": return this.name === "test" && parent.test === node; case "MemberExpression": return this.name === "object" && parent.object === node; default: return false; } default: if (parent.type === "NewExpression" && this.name === "callee" && parent.callee === node) { return containsCallExpression(node); } } if (assumeExpressionContext !== true && !this.canBeFirstInStatement() && this.firstInStatement()) return true; return false; }; function isBinary(node) { return n.BinaryExpression.check(node) || n.LogicalExpression.check(node); } function isUnaryLike(node) { return n.UnaryExpression.check(node) // I considered making SpreadElement and SpreadProperty subtypes // of UnaryExpression, but they're not really Expression nodes. || (n.SpreadElement && n.SpreadElement.check(node)) || (n.SpreadProperty && n.SpreadProperty.check(node)); } var PRECEDENCE = {}; [["||"], ["&&"], ["|"], ["^"], ["&"], ["==", "===", "!=", "!=="], ["<", ">", "<=", ">=", "in", "instanceof"], [">>", "<<", ">>>"], ["+", "-"], ["*", "/", "%"] ].forEach(function(tier, i) { tier.forEach(function(op) { PRECEDENCE[op] = i; }); }); function containsCallExpression(node) { if (n.CallExpression.check(node)) { return true; } if (isArray.check(node)) { return node.some(containsCallExpression); } if (n.Node.check(node)) { return types.someField(node, function(name, child) { return containsCallExpression(child); }); } return false; } NPp.canBeFirstInStatement = function() { var node = this.node; return !n.FunctionExpression.check(node) && !n.ObjectExpression.check(node); }; NPp.firstInStatement = function() { return firstInStatement(this); }; function firstInStatement(path) { for (var node, parent; path.parent; path = path.parent) { node = path.node; parent = path.parent.node; if (n.BlockStatement.check(parent) && path.parent.name === "body" && path.name === 0) { assert.strictEqual(parent.body[0], node); return true; } if (n.ExpressionStatement.check(parent) && path.name === "expression") { assert.strictEqual(parent.expression, node); return true; } if (n.SequenceExpression.check(parent) && path.parent.name === "expressions" && path.name === 0) { assert.strictEqual(parent.expressions[0], node); continue; } if (n.CallExpression.check(parent) && path.name === "callee") { assert.strictEqual(parent.callee, node); continue; } if (n.MemberExpression.check(parent) && path.name === "object") { assert.strictEqual(parent.object, node); continue; } if (n.ConditionalExpression.check(parent) && path.name === "test") { assert.strictEqual(parent.test, node); continue; } if (isBinary(parent) && path.name === "left") { assert.strictEqual(parent.left, node); continue; } if (n.UnaryExpression.check(parent) && !parent.prefix && path.name === "argument") { assert.strictEqual(parent.argument, node); continue; } return false; } return true; } /** * Pruning certain nodes will result in empty or incomplete nodes, here we clean those nodes up. */ function cleanUpNodesAfterPrune(remainingNodePath) { if (n.VariableDeclaration.check(remainingNodePath.node)) { var declarations = remainingNodePath.get('declarations').value; if (!declarations || declarations.length === 0) { return remainingNodePath.prune(); } } else if (n.ExpressionStatement.check(remainingNodePath.node)) { if (!remainingNodePath.get('expression').value) { return remainingNodePath.prune(); } } else if (n.IfStatement.check(remainingNodePath.node)) { cleanUpIfStatementAfterPrune(remainingNodePath); } return remainingNodePath; } function cleanUpIfStatementAfterPrune(ifStatement) { var testExpression = ifStatement.get('test').value; var alternate = ifStatement.get('alternate').value; var consequent = ifStatement.get('consequent').value; if (!consequent && !alternate) { var testExpressionStatement = b.expressionStatement(testExpression); ifStatement.replace(testExpressionStatement); } else if (!consequent && alternate) { var negatedTestExpression = b.unaryExpression('!', testExpression, true); if (n.UnaryExpression.check(testExpression) && testExpression.operator === '!') { negatedTestExpression = testExpression.argument; } ifStatement.get("test").replace(negatedTestExpression); ifStatement.get("consequent").replace(alternate); ifStatement.get("alternate").replace(); } } module.exports = NodePath;