#lang typed/racket/base (require/typed sugar/list [slice-at ((Listof (U QuadAttrKey QuadAttrValue)) Positive-Integer . -> . (Listof (List QuadAttrKey QuadAttrValue)))]) (require/typed racket/list [flatten (All (A) (Rec as (U Any (Listof as))) -> (Listof Any))]) (require (for-syntax racket/syntax racket/base) racket/string (except-in racket/list flatten) sugar/debug racket/bool hyphenate racket/function math/flonum) (require "quads-typed.rkt" "world-typed.rkt" "measure-typed.rkt") ;; predicate for use below (: list-of-mergeable-attrs? (Any . -> . Boolean)) (define (list-of-mergeable-attrs? xs) (and (list? xs) (andmap (λ(x) (or (quad? x) (quad-attrs? x) (hashable-list? x))) xs))) ;; faster than (listof pair?) (: pairs? (Any . -> . Boolean)) (define (pairs? x) (and (list? x) (andmap pair? x))) ;; push together multiple attr sources into one list of pairs. ;; mostly a helper function for the two attr functions below. (provide join-attrs) (: join-attrs ((Listof (U Quad QuadAttrs HashableList)) . -> . (Listof QuadAttrPair))) (define (join-attrs quads-or-attrs-or-lists) ((inst append-map QuadAttrPair QuadAttrs) (inst hash->list QuadAttrKey QuadAttrValue) (map (λ(x) (cond [(quad? x) (quad-attrs x)] [(quad-attrs? x) (cast x QuadAttrs)] [(hashable-list? x) (quadattrs (cast x (Listof Any)))] [else ;; something that will have no effect on result (cast (hash) QuadAttrs)])) quads-or-attrs-or-lists))) ;; flatten merges attributes, but applies special logic suitable to flattening ;; for instance, resolving x and y coordinates. (provide flatten-attrs) (: flatten-attrs ((U Quad QuadAttrs) * . -> . QuadAttrs)) (define (flatten-attrs . quads-or-attrs-or-falses) (define all-attrs (join-attrs quads-or-attrs-or-falses)) (define-values (x-attrs y-attrs other-attrs-reversed) (for/fold ([xas : (Listof QuadAttrPair) null] [yas : (Listof QuadAttrPair) null] [oas : (Listof QuadAttrPair) null]) ([attr (in-list all-attrs)]) (cond [(equal? (car attr) world:x-position-key) (values (cons attr xas) yas oas)] [(equal? (car attr) world:y-position-key) (values xas (cons attr yas) oas)] [else (values xas yas (cons attr oas))]))) (: make-cartesian-attr (QuadAttrKey (Listof QuadAttrPair) . -> . (Listof QuadAttrPair))) (define (make-cartesian-attr key attrs) (if (empty? attrs) empty (list (cons key (apply + (cast ((inst map QuadAttrValue QuadAttrPair) cdr attrs) (Listof Flonum))))))) (define x-attr (make-cartesian-attr world:x-position-key x-attrs)) (define y-attr (make-cartesian-attr world:y-position-key y-attrs)) (for/hash : QuadAttrs ([kv-pair (in-list (append x-attr y-attr (reverse other-attrs-reversed)))]) (values (car kv-pair) (cdr kv-pair)))) ;; merge concatenates attributes, with later ones overriding earlier. ;; most of the work is done by join-attrs. (provide merge-attrs) (: merge-attrs ((U Quad QuadAttrs HashableList) * . -> . QuadAttrs)) (define (merge-attrs . quads-or-attrs-or-lists) (for/hash : QuadAttrs ([kv-pair (in-list (join-attrs quads-or-attrs-or-lists))]) (values (car kv-pair) (cdr kv-pair)))) ;; pushes attributes down from parent quads to children, ;; resulting in a flat list of quads. (provide flatten-quad) (: flatten-quad (Quad . -> . (Listof Quad))) (define (flatten-quad q) (cast (flatten (let loop : (Treeof Quad) ([x : QuadListItem q][parent : Quad (box)]) (cond [(quad? x) (let ([x-with-parent-attrs (quad (quad-name x) (flatten-attrs parent x) ; child positioned last so it overrides parent attributes (quad-list x))]) (if (empty? (quad-list x)) x-with-parent-attrs ; no subelements, so stop here ((inst map (Treeof Quad) QuadListItem) (λ(xi) (loop xi x-with-parent-attrs)) (quad-list x))))] ; replace quad with its elements [else ;; it's a string (quad (quad-name parent) (quad-attrs parent) (list x))]))) (Listof Quad))) ;; flatten quad as above, ;; then dissolve it into individual character quads while copying attributes ;; input is often large, so macro allows us to avoid allocation (provide split-quad) (: split-quad (Quad . -> . (Listof Quad))) (define (split-quad q) (: do-explode ((QuadListItem) (Quad) . ->* . (Treeof Quad))) (define (do-explode x [parent (box)]) (cond [(quad? x) (if (empty? (quad-list x)) x ; no subelements, so stop here ((inst map (Treeof Quad) QuadListItem) (λ(xi) (do-explode xi x)) (quad-list x)))] ; replace quad with its elements, exploded [else ;; it's a string ((inst map (Treeof Quad) QuadListItem) (λ(xc) (quad world:split-quad-key (quad-attrs parent) (list xc))) (regexp-match* #px"." x))])) (cast (flatten (map do-explode (flatten-quad q))) (Listof Quad))) ;; merge chars into words (and boxes), leave the rest ;; if two quads are mergeable types, and have the same attributes, ;; they get merged. ;; input is often large, so macro allows us to avoid allocation (provide join-quads) (define/typed (join-quads qs-in) ((Listof Quad) . -> . (Listof Quad)) (let ([make-matcher (λ ([base-q : Quad]) (λ([q : Quad]) (and (member (quad-name q) world:mergeable-quad-types) (not (whitespace/nbsp? q)) ;; if key doesn't exist, it is compared against the default value. ;; this way, a nonexistent value will test true against a default value. (andmap (λ([key : Symbol] default) (equal? (quad-attr-ref base-q key default) (quad-attr-ref q key default))) (list world:font-name-key world:font-size-key world:font-weight-key world:font-style-key) (list (world:font-name-default) (world:font-size-default) (world:font-weight-default) (world:font-style-default))))))]) (let loop ([qs qs-in][acc null]) (if (null? qs) (reverse (cast acc (Listof Quad))) (let* ([base-q (first qs)] [mergeable-and-matches-base? (make-matcher base-q)]) ; make a new predicate function for this quad (cond [(mergeable-and-matches-base? base-q) ;; take as many quads that match, using the predicate function (define-values (matching-qs other-qs) (splitf-at (cdr qs) mergeable-and-matches-base?)) (define new-word (word (quad-attrs base-q) (string-append* (cast ((inst append-map QuadListItem Quad) quad-list (cons base-q matching-qs)) (Listof String))))) (loop other-qs (cons new-word acc))] ;; otherwise move on to the next in line [else (loop (cdr qs) (cons base-q acc))])))))) ;; propagate x and y adjustments throughout the tree, ;; using parent x and y to adjust children, and so on. (provide compute-absolute-positions) (: compute-absolute-positions (Quad . -> . Quad)) (define (compute-absolute-positions qli) (define result (let loop : QuadListItem ([qli : QuadListItem qli][parent-x : Flonum 0.0][parent-y : Flonum 0.0]) (cond [(quad? qli) (define adjusted-x (round-float (+ (cast (quad-attr-ref qli world:x-position-key 0.0) Flonum) parent-x))) (define adjusted-y (round-float (+ (cast (quad-attr-ref qli world:y-position-key 0.0) Flonum) parent-y))) (quad (quad-name qli) (merge-attrs qli (list world:x-position-key adjusted-x world:y-position-key adjusted-y)) ((inst map QuadListItem QuadListItem) (λ(qlii) (loop qlii adjusted-x adjusted-y)) (quad-list qli)))] [else ;; it's a string qli]))) (if (string? result) (error 'compute-absolute-positions "got string as result: ~v" result) result)) ;; functionally update a quad attr. Similar to hash-set (provide quad-attr-set) (: quad-attr-set (Quad QuadAttrKey QuadAttrValue . -> . Quad)) (define (quad-attr-set q k v) (quad (quad-name q) (merge-attrs (quad-attrs q) (list k v)) (quad-list q))) ;; functionally update multiple quad attrs. Similar to hash-set* (provide quad-attr-set*) (: quad-attr-set* (Quad (U QuadAttrKey QuadAttrValue) * . -> . Quad)) (define (quad-attr-set* q . kvs) (for/fold ([current-q q])([kv-list (in-list (slice-at kvs 2))]) (apply quad-attr-set current-q kv-list))) ;; functionally remove a quad attr. Similar to hash-remove (provide quad-attr-remove) (: quad-attr-remove (Quad QuadAttrKey . -> . Quad)) (define (quad-attr-remove q k) (if (quad-attrs q) (quad (quad-name q) (hash-remove (quad-attrs q) k) (quad-list q)) q)) ;; functionally remove multiple quad attrs. Similar to hash-remove* (provide quad-attr-remove*) (: quad-attr-remove* (Quad QuadAttrKey * . -> . Quad)) (define (quad-attr-remove* q . ks) (for/fold ([current-q q])([k (in-list ks)]) (quad-attr-remove current-q k))) ;; the last char of a quad (provide quad-last-char) (: quad-last-char (Quad . -> . (Option String))) (define (quad-last-char q) (define split-qs (split-quad q)) ; split makes it simple, but is it too expensive? (if (or (empty? split-qs) (empty? (quad-list (last split-qs)))) #f (let ([result((inst car QuadListItem QuadListItem) (quad-list (last split-qs)))]) (if (quad? result) (error 'quad-last-char "last element is not a string: ~v" result) result)))) ;; the first char of a quad (provide quad-first-char) (: quad-first-char (Quad . -> . (Option String))) (define (quad-first-char q) (define split-qs (split-quad q)) ; explosion makes it simple, but is it too expensive? (if (or (empty? split-qs) (empty? (quad-list (first split-qs)))) #f (let ([result((inst car QuadListItem QuadListItem) (quad-list (first split-qs)))]) (if (quad? result) (error 'quad-first-char "first element is not a string: ~v" result) result)))) (provide split-last) (define (split-last xs) (let-values ([(first-list last-list) ((inst split-at-right Any) (cast xs (Listof Any)) 1)]) (values first-list (car last-list)))) ;; like cons, but joins a list to an atom (provide snoc) (define-syntax-rule (snoc xs x) (append xs (list x)))