You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1435 lines
50 KiB
Python
1435 lines
50 KiB
Python
10 years ago
|
#!/usr/bin/python
|
||
|
#
|
||
|
# Copyright (c) 2005-2014 - Gustavo Niemeyer <gustavo@niemeyer.net>
|
||
|
#
|
||
|
# All rights reserved.
|
||
|
#
|
||
|
# Redistribution and use in source and binary forms, with or without
|
||
|
# modification, are permitted provided that the following conditions are met:
|
||
|
#
|
||
|
# 1. Redistributions of source code must retain the above copyright notice, this
|
||
|
# list of conditions and the following disclaimer.
|
||
|
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
||
|
# this list of conditions and the following disclaimer in the documentation
|
||
|
# and/or other materials provided with the distribution.
|
||
|
#
|
||
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
|
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
||
|
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||
|
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||
|
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
"""
|
||
|
@var Unassigned: Helper object instance representing unassigned values
|
||
|
|
||
|
@sort: Problem, Variable, Domain
|
||
|
@group Solvers: Solver,
|
||
|
BacktrackingSolver,
|
||
|
RecursiveBacktrackingSolver,
|
||
|
MinConflictsSolver
|
||
|
@group Constraints: Constraint,
|
||
|
FunctionConstraint,
|
||
|
AllDifferentConstraint,
|
||
|
AllEqualConstraint,
|
||
|
MaxSumConstraint,
|
||
|
ExactSumConstraint,
|
||
|
MinSumConstraint,
|
||
|
InSetConstraint,
|
||
|
NotInSetConstraint,
|
||
|
SomeInSetConstraint,
|
||
|
SomeNotInSetConstraint
|
||
|
"""
|
||
|
import random
|
||
|
import copy
|
||
|
|
||
|
__all__ = ["Problem", "Variable", "Domain", "Unassigned",
|
||
|
"Solver", "BacktrackingSolver", "RecursiveBacktrackingSolver",
|
||
|
"MinConflictsSolver", "Constraint", "FunctionConstraint",
|
||
|
"AllDifferentConstraint", "AllEqualConstraint", "MaxSumConstraint",
|
||
|
"ExactSumConstraint", "MinSumConstraint", "InSetConstraint",
|
||
|
"NotInSetConstraint", "SomeInSetConstraint",
|
||
|
"SomeNotInSetConstraint"]
|
||
|
|
||
|
class Problem(object):
|
||
|
"""
|
||
|
Class used to define a problem and retrieve solutions
|
||
|
"""
|
||
|
|
||
|
def __init__(self, solver=None):
|
||
|
"""
|
||
|
@param solver: Problem solver used to find solutions
|
||
|
(default is L{BacktrackingSolver})
|
||
|
@type solver: instance of a L{Solver} subclass
|
||
|
"""
|
||
|
self._solver = solver or BacktrackingSolver()
|
||
|
self._constraints = []
|
||
|
self._variables = {}
|
||
|
|
||
|
def reset(self):
|
||
|
"""
|
||
|
Reset the current problem definition
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> problem = Problem()
|
||
|
>>> problem.addVariable("a", [1, 2])
|
||
|
>>> problem.reset()
|
||
|
>>> problem.getSolution()
|
||
|
>>>
|
||
|
"""
|
||
|
del self._constraints[:]
|
||
|
self._variables.clear()
|
||
|
|
||
|
def setSolver(self, solver):
|
||
|
"""
|
||
|
Change the problem solver currently in use
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> solver = BacktrackingSolver()
|
||
|
>>> problem = Problem(solver)
|
||
|
>>> problem.getSolver() is solver
|
||
|
True
|
||
|
|
||
|
@param solver: New problem solver
|
||
|
@type solver: instance of a C{Solver} subclass
|
||
|
"""
|
||
|
self._solver = solver
|
||
|
|
||
|
def getSolver(self):
|
||
|
"""
|
||
|
Obtain the problem solver currently in use
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> solver = BacktrackingSolver()
|
||
|
>>> problem = Problem(solver)
|
||
|
>>> problem.getSolver() is solver
|
||
|
True
|
||
|
|
||
|
@return: Solver currently in use
|
||
|
@rtype: instance of a L{Solver} subclass
|
||
|
"""
|
||
|
return self._solver
|
||
|
|
||
|
def addVariable(self, variable, domain):
|
||
|
"""
|
||
|
Add a variable to the problem
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> problem = Problem()
|
||
|
>>> problem.addVariable("a", [1, 2])
|
||
|
>>> problem.getSolution() in ({'a': 1}, {'a': 2})
|
||
|
True
|
||
|
|
||
|
@param variable: Object representing a problem variable
|
||
|
@type variable: hashable object
|
||
|
@param domain: Set of items defining the possible values that
|
||
|
the given variable may assume
|
||
|
@type domain: list, tuple, or instance of C{Domain}
|
||
|
"""
|
||
|
if variable in self._variables:
|
||
|
raise ValueError, "Tried to insert duplicated variable %s" % \
|
||
|
repr(variable)
|
||
|
if type(domain) in (list, tuple):
|
||
|
domain = Domain(domain)
|
||
|
elif isinstance(domain, Domain):
|
||
|
domain = copy.copy(domain)
|
||
|
else:
|
||
|
raise TypeError, "Domains must be instances of subclasses of "\
|
||
|
"the Domain class"
|
||
|
if not domain:
|
||
|
raise ValueError, "Domain is empty"
|
||
|
self._variables[variable] = domain
|
||
|
|
||
|
def addVariables(self, variables, domain):
|
||
|
"""
|
||
|
Add one or more variables to the problem
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> problem = Problem()
|
||
|
>>> problem.addVariables(["a", "b"], [1, 2, 3])
|
||
|
>>> solutions = problem.getSolutions()
|
||
|
>>> len(solutions)
|
||
|
9
|
||
|
>>> {'a': 3, 'b': 1} in solutions
|
||
|
True
|
||
|
|
||
|
@param variables: Any object containing a sequence of objects
|
||
|
represeting problem variables
|
||
|
@type variables: sequence of hashable objects
|
||
|
@param domain: Set of items defining the possible values that
|
||
|
the given variables may assume
|
||
|
@type domain: list, tuple, or instance of C{Domain}
|
||
|
"""
|
||
|
for variable in variables:
|
||
|
self.addVariable(variable, domain)
|
||
|
|
||
|
def addConstraint(self, constraint, variables=None):
|
||
|
"""
|
||
|
Add a constraint to the problem
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> problem = Problem()
|
||
|
>>> problem.addVariables(["a", "b"], [1, 2, 3])
|
||
|
>>> problem.addConstraint(lambda a, b: b == a+1, ["a", "b"])
|
||
|
>>> solutions = problem.getSolutions()
|
||
|
>>>
|
||
|
|
||
|
@param constraint: Constraint to be included in the problem
|
||
|
@type constraint: instance a L{Constraint} subclass or a
|
||
|
function to be wrapped by L{FunctionConstraint}
|
||
|
@param variables: Variables affected by the constraint (default to
|
||
|
all variables). Depending on the constraint type
|
||
|
the order may be important.
|
||
|
@type variables: set or sequence of variables
|
||
|
"""
|
||
|
if not isinstance(constraint, Constraint):
|
||
|
if callable(constraint):
|
||
|
constraint = FunctionConstraint(constraint)
|
||
|
else:
|
||
|
raise ValueError, "Constraints must be instances of "\
|
||
|
"subclasses of the Constraint class"
|
||
|
self._constraints.append((constraint, variables))
|
||
|
|
||
|
def getSolution(self):
|
||
|
"""
|
||
|
Find and return a solution to the problem
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> problem = Problem()
|
||
|
>>> problem.getSolution() is None
|
||
|
True
|
||
|
>>> problem.addVariables(["a"], [42])
|
||
|
>>> problem.getSolution()
|
||
|
{'a': 42}
|
||
|
|
||
|
@return: Solution for the problem
|
||
|
@rtype: dictionary mapping variables to values
|
||
|
"""
|
||
|
domains, constraints, vconstraints = self._getArgs()
|
||
|
if not domains:
|
||
|
return None
|
||
|
return self._solver.getSolution(domains, constraints, vconstraints)
|
||
|
|
||
|
def getSolutions(self):
|
||
|
"""
|
||
|
Find and return all solutions to the problem
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> problem = Problem()
|
||
|
>>> problem.getSolutions() == []
|
||
|
True
|
||
|
>>> problem.addVariables(["a"], [42])
|
||
|
>>> problem.getSolutions()
|
||
|
[{'a': 42}]
|
||
|
|
||
|
@return: All solutions for the problem
|
||
|
@rtype: list of dictionaries mapping variables to values
|
||
|
"""
|
||
|
domains, constraints, vconstraints = self._getArgs()
|
||
|
if not domains:
|
||
|
return []
|
||
|
return self._solver.getSolutions(domains, constraints, vconstraints)
|
||
|
|
||
|
def getSolutionIter(self):
|
||
|
"""
|
||
|
Return an iterator to the solutions of the problem
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> problem = Problem()
|
||
|
>>> list(problem.getSolutionIter()) == []
|
||
|
True
|
||
|
>>> problem.addVariables(["a"], [42])
|
||
|
>>> iter = problem.getSolutionIter()
|
||
|
>>> iter.next()
|
||
|
{'a': 42}
|
||
|
>>> iter.next()
|
||
|
Traceback (most recent call last):
|
||
|
File "<stdin>", line 1, in ?
|
||
|
StopIteration
|
||
|
"""
|
||
|
domains, constraints, vconstraints = self._getArgs()
|
||
|
if not domains:
|
||
|
return iter(())
|
||
|
return self._solver.getSolutionIter(domains, constraints,
|
||
|
vconstraints)
|
||
|
|
||
|
def _getArgs(self):
|
||
|
domains = self._variables.copy()
|
||
|
allvariables = domains.keys()
|
||
|
constraints = []
|
||
|
for constraint, variables in self._constraints:
|
||
|
if not variables:
|
||
|
variables = allvariables
|
||
|
constraints.append((constraint, variables))
|
||
|
vconstraints = {}
|
||
|
for variable in domains:
|
||
|
vconstraints[variable] = []
|
||
|
for constraint, variables in constraints:
|
||
|
for variable in variables:
|
||
|
vconstraints[variable].append((constraint, variables))
|
||
|
for constraint, variables in constraints[:]:
|
||
|
constraint.preProcess(variables, domains,
|
||
|
constraints, vconstraints)
|
||
|
for domain in domains.values():
|
||
|
domain.resetState()
|
||
|
if not domain:
|
||
|
return None, None, None
|
||
|
#doArc8(getArcs(domains, constraints), domains, {})
|
||
|
return domains, constraints, vconstraints
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Solvers
|
||
|
# ----------------------------------------------------------------------
|
||
|
|
||
|
def getArcs(domains, constraints):
|
||
|
"""
|
||
|
Return a dictionary mapping pairs (arcs) of constrained variables
|
||
|
|
||
|
@attention: Currently unused.
|
||
|
"""
|
||
|
arcs = {}
|
||
|
for x in constraints:
|
||
|
constraint, variables = x
|
||
|
if len(variables) == 2:
|
||
|
variable1, variable2 = variables
|
||
|
arcs.setdefault(variable1, {})\
|
||
|
.setdefault(variable2, [])\
|
||
|
.append(x)
|
||
|
arcs.setdefault(variable2, {})\
|
||
|
.setdefault(variable1, [])\
|
||
|
.append(x)
|
||
|
return arcs
|
||
|
|
||
|
def doArc8(arcs, domains, assignments):
|
||
|
"""
|
||
|
Perform the ARC-8 arc checking algorithm and prune domains
|
||
|
|
||
|
@attention: Currently unused.
|
||
|
"""
|
||
|
check = dict.fromkeys(domains, True)
|
||
|
while check:
|
||
|
variable, _ = check.popitem()
|
||
|
if variable not in arcs or variable in assignments:
|
||
|
continue
|
||
|
domain = domains[variable]
|
||
|
arcsvariable = arcs[variable]
|
||
|
for othervariable in arcsvariable:
|
||
|
arcconstraints = arcsvariable[othervariable]
|
||
|
if othervariable in assignments:
|
||
|
otherdomain = [assignments[othervariable]]
|
||
|
else:
|
||
|
otherdomain = domains[othervariable]
|
||
|
if domain:
|
||
|
changed = False
|
||
|
for value in domain[:]:
|
||
|
assignments[variable] = value
|
||
|
if otherdomain:
|
||
|
for othervalue in otherdomain:
|
||
|
assignments[othervariable] = othervalue
|
||
|
for constraint, variables in arcconstraints:
|
||
|
if not constraint(variables, domains,
|
||
|
assignments, True):
|
||
|
break
|
||
|
else:
|
||
|
# All constraints passed. Value is safe.
|
||
|
break
|
||
|
else:
|
||
|
# All othervalues failed. Kill value.
|
||
|
domain.hideValue(value)
|
||
|
changed = True
|
||
|
del assignments[othervariable]
|
||
|
del assignments[variable]
|
||
|
#if changed:
|
||
|
# check.update(dict.fromkeys(arcsvariable))
|
||
|
if not domain:
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
class Solver(object):
|
||
|
"""
|
||
|
Abstract base class for solvers
|
||
|
|
||
|
@sort: getSolution, getSolutions, getSolutionIter
|
||
|
"""
|
||
|
|
||
|
def getSolution(self, domains, constraints, vconstraints):
|
||
|
"""
|
||
|
Return one solution for the given problem
|
||
|
|
||
|
@param domains: Dictionary mapping variables to their domains
|
||
|
@type domains: dict
|
||
|
@param constraints: List of pairs of (constraint, variables)
|
||
|
@type constraints: list
|
||
|
@param vconstraints: Dictionary mapping variables to a list of
|
||
|
constraints affecting the given variables.
|
||
|
@type vconstraints: dict
|
||
|
"""
|
||
|
raise NotImplementedError, \
|
||
|
"%s is an abstract class" % self.__class__.__name__
|
||
|
|
||
|
def getSolutions(self, domains, constraints, vconstraints):
|
||
|
"""
|
||
|
Return all solutions for the given problem
|
||
|
|
||
|
@param domains: Dictionary mapping variables to domains
|
||
|
@type domains: dict
|
||
|
@param constraints: List of pairs of (constraint, variables)
|
||
|
@type constraints: list
|
||
|
@param vconstraints: Dictionary mapping variables to a list of
|
||
|
constraints affecting the given variables.
|
||
|
@type vconstraints: dict
|
||
|
"""
|
||
|
raise NotImplementedError, \
|
||
|
"%s provides only a single solution" % self.__class__.__name__
|
||
|
|
||
|
def getSolutionIter(self, domains, constraints, vconstraints):
|
||
|
"""
|
||
|
Return an iterator for the solutions of the given problem
|
||
|
|
||
|
@param domains: Dictionary mapping variables to domains
|
||
|
@type domains: dict
|
||
|
@param constraints: List of pairs of (constraint, variables)
|
||
|
@type constraints: list
|
||
|
@param vconstraints: Dictionary mapping variables to a list of
|
||
|
constraints affecting the given variables.
|
||
|
@type vconstraints: dict
|
||
|
"""
|
||
|
raise NotImplementedError, \
|
||
|
"%s doesn't provide iteration" % self.__class__.__name__
|
||
|
|
||
|
class BacktrackingSolver(Solver):
|
||
|
"""
|
||
|
Problem solver with backtracking capabilities
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
>>> result = [[('a', 1), ('b', 2)],
|
||
|
... [('a', 1), ('b', 3)],
|
||
|
... [('a', 2), ('b', 3)]]
|
||
|
|
||
|
>>> problem = Problem(BacktrackingSolver())
|
||
|
>>> problem.addVariables(["a", "b"], [1, 2, 3])
|
||
|
>>> problem.addConstraint(lambda a, b: b > a, ["a", "b"])
|
||
|
|
||
|
>>> solution = problem.getSolution()
|
||
|
>>> sorted(solution.items()) in result
|
||
|
True
|
||
|
|
||
|
>>> for solution in problem.getSolutionIter():
|
||
|
... sorted(solution.items()) in result
|
||
|
True
|
||
|
True
|
||
|
True
|
||
|
|
||
|
>>> for solution in problem.getSolutions():
|
||
|
... sorted(solution.items()) in result
|
||
|
True
|
||
|
True
|
||
|
True
|
||
|
"""#"""
|
||
|
|
||
|
def __init__(self, forwardcheck=True):
|
||
|
"""
|
||
|
@param forwardcheck: If false forward checking will not be requested
|
||
|
to constraints while looking for solutions
|
||
|
(default is true)
|
||
|
@type forwardcheck: bool
|
||
|
"""
|
||
|
self._forwardcheck = forwardcheck
|
||
|
|
||
|
def getSolutionIter(self, domains, constraints, vconstraints):
|
||
|
forwardcheck = self._forwardcheck
|
||
|
assignments = {}
|
||
|
|
||
|
queue = []
|
||
|
|
||
|
while True:
|
||
|
|
||
|
# Mix the Degree and Minimum Remaing Values (MRV) heuristics
|
||
|
lst = [(-len(vconstraints[variable]),
|
||
|
len(domains[variable]), variable) for variable in domains]
|
||
|
lst.sort()
|
||
|
for item in lst:
|
||
|
if item[-1] not in assignments:
|
||
|
# Found unassigned variable
|
||
|
variable = item[-1]
|
||
|
values = domains[variable][:]
|
||
|
if forwardcheck:
|
||
|
pushdomains = [domains[x] for x in domains
|
||
|
if x not in assignments and
|
||
|
x != variable]
|
||
|
else:
|
||
|
pushdomains = None
|
||
|
break
|
||
|
else:
|
||
|
# No unassigned variables. We've got a solution. Go back
|
||
|
# to last variable, if there's one.
|
||
|
yield assignments.copy()
|
||
|
if not queue:
|
||
|
return
|
||
|
variable, values, pushdomains = queue.pop()
|
||
|
if pushdomains:
|
||
|
for domain in pushdomains:
|
||
|
domain.popState()
|
||
|
|
||
|
while True:
|
||
|
# We have a variable. Do we have any values left?
|
||
|
if not values:
|
||
|
# No. Go back to last variable, if there's one.
|
||
|
del assignments[variable]
|
||
|
while queue:
|
||
|
variable, values, pushdomains = queue.pop()
|
||
|
if pushdomains:
|
||
|
for domain in pushdomains:
|
||
|
domain.popState()
|
||
|
if values:
|
||
|
break
|
||
|
del assignments[variable]
|
||
|
else:
|
||
|
return
|
||
|
|
||
|
# Got a value. Check it.
|
||
|
assignments[variable] = values.pop()
|
||
|
|
||
|
if pushdomains:
|
||
|
for domain in pushdomains:
|
||
|
domain.pushState()
|
||
|
|
||
|
for constraint, variables in vconstraints[variable]:
|
||
|
if not constraint(variables, domains, assignments,
|
||
|
pushdomains):
|
||
|
# Value is not good.
|
||
|
break
|
||
|
else:
|
||
|
break
|
||
|
|
||
|
if pushdomains:
|
||
|
for domain in pushdomains:
|
||
|
domain.popState()
|
||
|
|
||
|
# Push state before looking for next variable.
|
||
|
queue.append((variable, values, pushdomains))
|
||
|
|
||
|
raise RuntimeError, "Can't happen"
|
||
|
|
||
|
def getSolution(self, domains, constraints, vconstraints):
|
||
|
iter = self.getSolutionIter(domains, constraints, vconstraints)
|
||
|
try:
|
||
|
return iter.next()
|
||
|
except StopIteration:
|
||
|
return None
|
||
|
|
||
|
def getSolutions(self, domains, constraints, vconstraints):
|
||
|
return list(self.getSolutionIter(domains, constraints, vconstraints))
|
||
|
|
||
|
|
||
|
class RecursiveBacktrackingSolver(Solver):
|
||
|
"""
|
||
|
Recursive problem solver with backtracking capabilities
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
>>> result = [[('a', 1), ('b', 2)],
|
||
|
... [('a', 1), ('b', 3)],
|
||
|
... [('a', 2), ('b', 3)]]
|
||
|
|
||
|
>>> problem = Problem(RecursiveBacktrackingSolver())
|
||
|
>>> problem.addVariables(["a", "b"], [1, 2, 3])
|
||
|
>>> problem.addConstraint(lambda a, b: b > a, ["a", "b"])
|
||
|
|
||
|
>>> solution = problem.getSolution()
|
||
|
>>> sorted(solution.items()) in result
|
||
|
True
|
||
|
|
||
|
>>> for solution in problem.getSolutions():
|
||
|
... sorted(solution.items()) in result
|
||
|
True
|
||
|
True
|
||
|
True
|
||
|
|
||
|
>>> problem.getSolutionIter()
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
NotImplementedError: RecursiveBacktrackingSolver doesn't provide iteration
|
||
|
"""#"""
|
||
|
|
||
|
def __init__(self, forwardcheck=True):
|
||
|
"""
|
||
|
@param forwardcheck: If false forward checking will not be requested
|
||
|
to constraints while looking for solutions
|
||
|
(default is true)
|
||
|
@type forwardcheck: bool
|
||
|
"""
|
||
|
self._forwardcheck = forwardcheck
|
||
|
|
||
|
def recursiveBacktracking(self, solutions, domains, vconstraints,
|
||
|
assignments, single):
|
||
|
|
||
|
# Mix the Degree and Minimum Remaing Values (MRV) heuristics
|
||
|
lst = [(-len(vconstraints[variable]),
|
||
|
len(domains[variable]), variable) for variable in domains]
|
||
|
lst.sort()
|
||
|
for item in lst:
|
||
|
if item[-1] not in assignments:
|
||
|
# Found an unassigned variable. Let's go.
|
||
|
break
|
||
|
else:
|
||
|
# No unassigned variables. We've got a solution.
|
||
|
solutions.append(assignments.copy())
|
||
|
return solutions
|
||
|
|
||
|
variable = item[-1]
|
||
|
assignments[variable] = None
|
||
|
|
||
|
forwardcheck = self._forwardcheck
|
||
|
if forwardcheck:
|
||
|
pushdomains = [domains[x] for x in domains if x not in assignments]
|
||
|
else:
|
||
|
pushdomains = None
|
||
|
|
||
|
for value in domains[variable]:
|
||
|
assignments[variable] = value
|
||
|
if pushdomains:
|
||
|
for domain in pushdomains:
|
||
|
domain.pushState()
|
||
|
for constraint, variables in vconstraints[variable]:
|
||
|
if not constraint(variables, domains, assignments,
|
||
|
pushdomains):
|
||
|
# Value is not good.
|
||
|
break
|
||
|
else:
|
||
|
# Value is good. Recurse and get next variable.
|
||
|
self.recursiveBacktracking(solutions, domains, vconstraints,
|
||
|
assignments, single)
|
||
|
if solutions and single:
|
||
|
return solutions
|
||
|
if pushdomains:
|
||
|
for domain in pushdomains:
|
||
|
domain.popState()
|
||
|
del assignments[variable]
|
||
|
return solutions
|
||
|
|
||
|
def getSolution(self, domains, constraints, vconstraints):
|
||
|
solutions = self.recursiveBacktracking([], domains, vconstraints,
|
||
|
{}, True)
|
||
|
return solutions and solutions[0] or None
|
||
|
|
||
|
def getSolutions(self, domains, constraints, vconstraints):
|
||
|
return self.recursiveBacktracking([], domains, vconstraints,
|
||
|
{}, False)
|
||
|
|
||
|
|
||
|
class MinConflictsSolver(Solver):
|
||
|
"""
|
||
|
Problem solver based on the minimum conflicts theory
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
>>> result = [[('a', 1), ('b', 2)],
|
||
|
... [('a', 1), ('b', 3)],
|
||
|
... [('a', 2), ('b', 3)]]
|
||
|
|
||
|
>>> problem = Problem(MinConflictsSolver())
|
||
|
>>> problem.addVariables(["a", "b"], [1, 2, 3])
|
||
|
>>> problem.addConstraint(lambda a, b: b > a, ["a", "b"])
|
||
|
|
||
|
>>> solution = problem.getSolution()
|
||
|
>>> sorted(solution.items()) in result
|
||
|
True
|
||
|
|
||
|
>>> problem.getSolutions()
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
NotImplementedError: MinConflictsSolver provides only a single solution
|
||
|
|
||
|
>>> problem.getSolutionIter()
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
NotImplementedError: MinConflictsSolver doesn't provide iteration
|
||
|
"""#"""
|
||
|
|
||
|
def __init__(self, steps=1000):
|
||
|
"""
|
||
|
@param steps: Maximum number of steps to perform before giving up
|
||
|
when looking for a solution (default is 1000)
|
||
|
@type steps: int
|
||
|
"""
|
||
|
self._steps = steps
|
||
|
|
||
|
def getSolution(self, domains, constraints, vconstraints):
|
||
|
assignments = {}
|
||
|
# Initial assignment
|
||
|
for variable in domains:
|
||
|
assignments[variable] = random.choice(domains[variable])
|
||
|
for _ in xrange(self._steps):
|
||
|
conflicted = False
|
||
|
lst = domains.keys()
|
||
|
random.shuffle(lst)
|
||
|
for variable in lst:
|
||
|
# Check if variable is not in conflict
|
||
|
for constraint, variables in vconstraints[variable]:
|
||
|
if not constraint(variables, domains, assignments):
|
||
|
break
|
||
|
else:
|
||
|
continue
|
||
|
# Variable has conflicts. Find values with less conflicts.
|
||
|
mincount = len(vconstraints[variable])
|
||
|
minvalues = []
|
||
|
for value in domains[variable]:
|
||
|
assignments[variable] = value
|
||
|
count = 0
|
||
|
for constraint, variables in vconstraints[variable]:
|
||
|
if not constraint(variables, domains, assignments):
|
||
|
count += 1
|
||
|
if count == mincount:
|
||
|
minvalues.append(value)
|
||
|
elif count < mincount:
|
||
|
mincount = count
|
||
|
del minvalues[:]
|
||
|
minvalues.append(value)
|
||
|
# Pick a random one from these values.
|
||
|
assignments[variable] = random.choice(minvalues)
|
||
|
conflicted = True
|
||
|
if not conflicted:
|
||
|
return assignments
|
||
|
return None
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Variables
|
||
|
# ----------------------------------------------------------------------
|
||
|
|
||
|
class Variable(object):
|
||
|
"""
|
||
|
Helper class for variable definition
|
||
|
|
||
|
Using this class is optional, since any hashable object,
|
||
|
including plain strings and integers, may be used as variables.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, name):
|
||
|
"""
|
||
|
@param name: Generic variable name for problem-specific purposes
|
||
|
@type name: string
|
||
|
"""
|
||
|
self.name = name
|
||
|
|
||
|
def __repr__(self):
|
||
|
return self.name
|
||
|
|
||
|
Unassigned = Variable("Unassigned")
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Domains
|
||
|
# ----------------------------------------------------------------------
|
||
|
|
||
|
class Domain(list):
|
||
|
"""
|
||
|
Class used to control possible values for variables
|
||
|
|
||
|
When list or tuples are used as domains, they are automatically
|
||
|
converted to an instance of that class.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, set):
|
||
|
"""
|
||
|
@param set: Set of values that the given variables may assume
|
||
|
@type set: set of objects comparable by equality
|
||
|
"""
|
||
|
list.__init__(self, set)
|
||
|
self._hidden = []
|
||
|
self._states = []
|
||
|
|
||
|
def resetState(self):
|
||
|
"""
|
||
|
Reset to the original domain state, including all possible values
|
||
|
"""
|
||
|
self.extend(self._hidden)
|
||
|
del self._hidden[:]
|
||
|
del self._states[:]
|
||
|
|
||
|
def pushState(self):
|
||
|
"""
|
||
|
Save current domain state
|
||
|
|
||
|
Variables hidden after that call are restored when that state
|
||
|
is popped from the stack.
|
||
|
"""
|
||
|
self._states.append(len(self))
|
||
|
|
||
|
def popState(self):
|
||
|
"""
|
||
|
Restore domain state from the top of the stack
|
||
|
|
||
|
Variables hidden since the last popped state are then available
|
||
|
again.
|
||
|
"""
|
||
|
diff = self._states.pop()-len(self)
|
||
|
if diff:
|
||
|
self.extend(self._hidden[-diff:])
|
||
|
del self._hidden[-diff:]
|
||
|
|
||
|
def hideValue(self, value):
|
||
|
"""
|
||
|
Hide the given value from the domain
|
||
|
|
||
|
After that call the given value won't be seen as a possible value
|
||
|
on that domain anymore. The hidden value will be restored when the
|
||
|
previous saved state is popped.
|
||
|
|
||
|
@param value: Object currently available in the domain
|
||
|
"""
|
||
|
list.remove(self, value)
|
||
|
self._hidden.append(value)
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Constraints
|
||
|
# ----------------------------------------------------------------------
|
||
|
|
||
|
class Constraint(object):
|
||
|
"""
|
||
|
Abstract base class for constraints
|
||
|
"""
|
||
|
|
||
|
def __call__(self, variables, domains, assignments, forwardcheck=False):
|
||
|
"""
|
||
|
Perform the constraint checking
|
||
|
|
||
|
If the forwardcheck parameter is not false, besides telling if
|
||
|
the constraint is currently broken or not, the constraint
|
||
|
implementation may choose to hide values from the domains of
|
||
|
unassigned variables to prevent them from being used, and thus
|
||
|
prune the search space.
|
||
|
|
||
|
@param variables: Variables affected by that constraint, in the
|
||
|
same order provided by the user
|
||
|
@type variables: sequence
|
||
|
@param domains: Dictionary mapping variables to their domains
|
||
|
@type domains: dict
|
||
|
@param assignments: Dictionary mapping assigned variables to their
|
||
|
current assumed value
|
||
|
@type assignments: dict
|
||
|
@param forwardcheck: Boolean value stating whether forward checking
|
||
|
should be performed or not
|
||
|
@return: Boolean value stating if this constraint is currently
|
||
|
broken or not
|
||
|
@rtype: bool
|
||
|
"""#"""
|
||
|
return True
|
||
|
|
||
|
def preProcess(self, variables, domains, constraints, vconstraints):
|
||
|
"""
|
||
|
Preprocess variable domains
|
||
|
|
||
|
This method is called before starting to look for solutions,
|
||
|
and is used to prune domains with specific constraint logic
|
||
|
when possible. For instance, any constraints with a single
|
||
|
variable may be applied on all possible values and removed,
|
||
|
since they may act on individual values even without further
|
||
|
knowledge about other assignments.
|
||
|
|
||
|
@param variables: Variables affected by that constraint, in the
|
||
|
same order provided by the user
|
||
|
@type variables: sequence
|
||
|
@param domains: Dictionary mapping variables to their domains
|
||
|
@type domains: dict
|
||
|
@param constraints: List of pairs of (constraint, variables)
|
||
|
@type constraints: list
|
||
|
@param vconstraints: Dictionary mapping variables to a list of
|
||
|
constraints affecting the given variables.
|
||
|
@type vconstraints: dict
|
||
|
"""#"""
|
||
|
if len(variables) == 1:
|
||
|
variable = variables[0]
|
||
|
domain = domains[variable]
|
||
|
for value in domain[:]:
|
||
|
if not self(variables, domains, {variable: value}):
|
||
|
domain.remove(value)
|
||
|
constraints.remove((self, variables))
|
||
|
vconstraints[variable].remove((self, variables))
|
||
|
|
||
|
def forwardCheck(self, variables, domains, assignments,
|
||
|
_unassigned=Unassigned):
|
||
|
"""
|
||
|
Helper method for generic forward checking
|
||
|
|
||
|
Currently, this method acts only when there's a single
|
||
|
unassigned variable.
|
||
|
|
||
|
@param variables: Variables affected by that constraint, in the
|
||
|
same order provided by the user
|
||
|
@type variables: sequence
|
||
|
@param domains: Dictionary mapping variables to their domains
|
||
|
@type domains: dict
|
||
|
@param assignments: Dictionary mapping assigned variables to their
|
||
|
current assumed value
|
||
|
@type assignments: dict
|
||
|
@return: Boolean value stating if this constraint is currently
|
||
|
broken or not
|
||
|
@rtype: bool
|
||
|
"""#"""
|
||
|
unassignedvariable = _unassigned
|
||
|
for variable in variables:
|
||
|
if variable not in assignments:
|
||
|
if unassignedvariable is _unassigned:
|
||
|
unassignedvariable = variable
|
||
|
else:
|
||
|
break
|
||
|
else:
|
||
|
if unassignedvariable is not _unassigned:
|
||
|
# Remove from the unassigned variable domain's all
|
||
|
# values which break our variable's constraints.
|
||
|
domain = domains[unassignedvariable]
|
||
|
if domain:
|
||
|
for value in domain[:]:
|
||
|
assignments[unassignedvariable] = value
|
||
|
if not self(variables, domains, assignments):
|
||
|
domain.hideValue(value)
|
||
|
del assignments[unassignedvariable]
|
||
|
if not domain:
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
class FunctionConstraint(Constraint):
|
||
|
"""
|
||
|
Constraint which wraps a function defining the constraint logic
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
>>> problem = Problem()
|
||
|
>>> problem.addVariables(["a", "b"], [1, 2])
|
||
|
>>> def func(a, b):
|
||
|
... return b > a
|
||
|
>>> problem.addConstraint(func, ["a", "b"])
|
||
|
>>> problem.getSolution()
|
||
|
{'a': 1, 'b': 2}
|
||
|
|
||
|
>>> problem = Problem()
|
||
|
>>> problem.addVariables(["a", "b"], [1, 2])
|
||
|
>>> def func(a, b):
|
||
|
... return b > a
|
||
|
>>> problem.addConstraint(FunctionConstraint(func), ["a", "b"])
|
||
|
>>> problem.getSolution()
|
||
|
{'a': 1, 'b': 2}
|
||
|
"""#"""
|
||
|
|
||
|
def __init__(self, func, assigned=True):
|
||
|
"""
|
||
|
@param func: Function wrapped and queried for constraint logic
|
||
|
@type func: callable object
|
||
|
@param assigned: Whether the function may receive unassigned
|
||
|
variables or not
|
||
|
@type assigned: bool
|
||
|
"""
|
||
|
self._func = func
|
||
|
self._assigned = assigned
|
||
|
|
||
|
def __call__(self, variables, domains, assignments, forwardcheck=False,
|
||
|
_unassigned=Unassigned):
|
||
|
parms = [assignments.get(x, _unassigned) for x in variables]
|
||
|
missing = parms.count(_unassigned)
|
||
|
if missing:
|
||
|
return ((self._assigned or self._func(*parms)) and
|
||
|
(not forwardcheck or missing != 1 or
|
||
|
self.forwardCheck(variables, domains, assignments)))
|
||
|
return self._func(*parms)
|
||
|
|
||
|
class AllDifferentConstraint(Constraint):
|
||
|
"""
|
||
|
Constraint enforcing that values of all given variables are different
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> problem = Problem()
|
||
|
>>> problem.addVariables(["a", "b"], [1, 2])
|
||
|
>>> problem.addConstraint(AllDifferentConstraint())
|
||
|
>>> sorted(sorted(x.items()) for x in problem.getSolutions())
|
||
|
[[('a', 1), ('b', 2)], [('a', 2), ('b', 1)]]
|
||
|
"""#"""
|
||
|
|
||
|
def __call__(self, variables, domains, assignments, forwardcheck=False,
|
||
|
_unassigned=Unassigned):
|
||
|
seen = {}
|
||
|
for variable in variables:
|
||
|
value = assignments.get(variable, _unassigned)
|
||
|
if value is not _unassigned:
|
||
|
if value in seen:
|
||
|
return False
|
||
|
seen[value] = True
|
||
|
if forwardcheck:
|
||
|
for variable in variables:
|
||
|
if variable not in assignments:
|
||
|
domain = domains[variable]
|
||
|
for value in seen:
|
||
|
if value in domain:
|
||
|
domain.hideValue(value)
|
||
|
if not domain:
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
class AllEqualConstraint(Constraint):
|
||
|
"""
|
||
|
Constraint enforcing that values of all given variables are equal
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> problem = Problem()
|
||
|
>>> problem.addVariables(["a", "b"], [1, 2])
|
||
|
>>> problem.addConstraint(AllEqualConstraint())
|
||
|
>>> sorted(sorted(x.items()) for x in problem.getSolutions())
|
||
|
[[('a', 1), ('b', 1)], [('a', 2), ('b', 2)]]
|
||
|
"""#"""
|
||
|
|
||
|
def __call__(self, variables, domains, assignments, forwardcheck=False,
|
||
|
_unassigned=Unassigned):
|
||
|
singlevalue = _unassigned
|
||
|
for variable in variables:
|
||
|
value = assignments.get(variable, _unassigned)
|
||
|
if singlevalue is _unassigned:
|
||
|
singlevalue = value
|
||
|
elif value is not _unassigned and value != singlevalue:
|
||
|
return False
|
||
|
if forwardcheck and singlevalue is not _unassigned:
|
||
|
for variable in variables:
|
||
|
if variable not in assignments:
|
||
|
domain = domains[variable]
|
||
|
if singlevalue not in domain:
|
||
|
return False
|
||
|
for value in domain[:]:
|
||
|
if value != singlevalue:
|
||
|
domain.hideValue(value)
|
||
|
return True
|
||
|
|
||
|
class MaxSumConstraint(Constraint):
|
||
|
"""
|
||
|
Constraint enforcing that values of given variables sum up to
|
||
|
a given amount
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> problem = Problem()
|
||
|
>>> problem.addVariables(["a", "b"], [1, 2])
|
||
|
>>> problem.addConstraint(MaxSumConstraint(3))
|
||
|
>>> sorted(sorted(x.items()) for x in problem.getSolutions())
|
||
|
[[('a', 1), ('b', 1)], [('a', 1), ('b', 2)], [('a', 2), ('b', 1)]]
|
||
|
"""#"""
|
||
|
|
||
|
def __init__(self, maxsum, multipliers=None):
|
||
|
"""
|
||
|
@param maxsum: Value to be considered as the maximum sum
|
||
|
@type maxsum: number
|
||
|
@param multipliers: If given, variable values will be multiplied by
|
||
|
the given factors before being summed to be checked
|
||
|
@type multipliers: sequence of numbers
|
||
|
"""
|
||
|
self._maxsum = maxsum
|
||
|
self._multipliers = multipliers
|
||
|
|
||
|
def preProcess(self, variables, domains, constraints, vconstraints):
|
||
|
Constraint.preProcess(self, variables, domains,
|
||
|
constraints, vconstraints)
|
||
|
multipliers = self._multipliers
|
||
|
maxsum = self._maxsum
|
||
|
if multipliers:
|
||
|
for variable, multiplier in zip(variables, multipliers):
|
||
|
domain = domains[variable]
|
||
|
for value in domain[:]:
|
||
|
if value*multiplier > maxsum:
|
||
|
domain.remove(value)
|
||
|
else:
|
||
|
for variable in variables:
|
||
|
domain = domains[variable]
|
||
|
for value in domain[:]:
|
||
|
if value > maxsum:
|
||
|
domain.remove(value)
|
||
|
|
||
|
def __call__(self, variables, domains, assignments, forwardcheck=False):
|
||
|
multipliers = self._multipliers
|
||
|
maxsum = self._maxsum
|
||
|
sum = 0
|
||
|
if multipliers:
|
||
|
for variable, multiplier in zip(variables, multipliers):
|
||
|
if variable in assignments:
|
||
|
sum += assignments[variable]*multiplier
|
||
|
if type(sum) is float:
|
||
|
sum = round(sum, 10)
|
||
|
if sum > maxsum:
|
||
|
return False
|
||
|
if forwardcheck:
|
||
|
for variable, multiplier in zip(variables, multipliers):
|
||
|
if variable not in assignments:
|
||
|
domain = domains[variable]
|
||
|
for value in domain[:]:
|
||
|
if sum+value*multiplier > maxsum:
|
||
|
domain.hideValue(value)
|
||
|
if not domain:
|
||
|
return False
|
||
|
else:
|
||
|
for variable in variables:
|
||
|
if variable in assignments:
|
||
|
sum += assignments[variable]
|
||
|
if type(sum) is float:
|
||
|
sum = round(sum, 10)
|
||
|
if sum > maxsum:
|
||
|
return False
|
||
|
if forwardcheck:
|
||
|
for variable in variables:
|
||
|
if variable not in assignments:
|
||
|
domain = domains[variable]
|
||
|
for value in domain[:]:
|
||
|
if sum+value > maxsum:
|
||
|
domain.hideValue(value)
|
||
|
if not domain:
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
class ExactSumConstraint(Constraint):
|
||
|
"""
|
||
|
Constraint enforcing that values of given variables sum exactly
|
||
|
to a given amount
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> problem = Problem()
|
||
|
>>> problem.addVariables(["a", "b"], [1, 2])
|
||
|
>>> problem.addConstraint(ExactSumConstraint(3))
|
||
|
>>> sorted(sorted(x.items()) for x in problem.getSolutions())
|
||
|
[[('a', 1), ('b', 2)], [('a', 2), ('b', 1)]]
|
||
|
"""#"""
|
||
|
|
||
|
def __init__(self, exactsum, multipliers=None):
|
||
|
"""
|
||
|
@param exactsum: Value to be considered as the exact sum
|
||
|
@type exactsum: number
|
||
|
@param multipliers: If given, variable values will be multiplied by
|
||
|
the given factors before being summed to be checked
|
||
|
@type multipliers: sequence of numbers
|
||
|
"""
|
||
|
self._exactsum = exactsum
|
||
|
self._multipliers = multipliers
|
||
|
|
||
|
def preProcess(self, variables, domains, constraints, vconstraints):
|
||
|
Constraint.preProcess(self, variables, domains,
|
||
|
constraints, vconstraints)
|
||
|
multipliers = self._multipliers
|
||
|
exactsum = self._exactsum
|
||
|
if multipliers:
|
||
|
for variable, multiplier in zip(variables, multipliers):
|
||
|
domain = domains[variable]
|
||
|
for value in domain[:]:
|
||
|
if value*multiplier > exactsum:
|
||
|
domain.remove(value)
|
||
|
else:
|
||
|
for variable in variables:
|
||
|
domain = domains[variable]
|
||
|
for value in domain[:]:
|
||
|
if value > exactsum:
|
||
|
domain.remove(value)
|
||
|
|
||
|
def __call__(self, variables, domains, assignments, forwardcheck=False):
|
||
|
multipliers = self._multipliers
|
||
|
exactsum = self._exactsum
|
||
|
sum = 0
|
||
|
missing = False
|
||
|
if multipliers:
|
||
|
for variable, multiplier in zip(variables, multipliers):
|
||
|
if variable in assignments:
|
||
|
sum += assignments[variable]*multiplier
|
||
|
else:
|
||
|
missing = True
|
||
|
if type(sum) is float:
|
||
|
sum = round(sum, 10)
|
||
|
if sum > exactsum:
|
||
|
return False
|
||
|
if forwardcheck and missing:
|
||
|
for variable, multiplier in zip(variables, multipliers):
|
||
|
if variable not in assignments:
|
||
|
domain = domains[variable]
|
||
|
for value in domain[:]:
|
||
|
if sum+value*multiplier > exactsum:
|
||
|
domain.hideValue(value)
|
||
|
if not domain:
|
||
|
return False
|
||
|
else:
|
||
|
for variable in variables:
|
||
|
if variable in assignments:
|
||
|
sum += assignments[variable]
|
||
|
else:
|
||
|
missing = True
|
||
|
if type(sum) is float:
|
||
|
sum = round(sum, 10)
|
||
|
if sum > exactsum:
|
||
|
return False
|
||
|
if forwardcheck and missing:
|
||
|
for variable in variables:
|
||
|
if variable not in assignments:
|
||
|
domain = domains[variable]
|
||
|
for value in domain[:]:
|
||
|
if sum+value > exactsum:
|
||
|
domain.hideValue(value)
|
||
|
if not domain:
|
||
|
return False
|
||
|
if missing:
|
||
|
return sum <= exactsum
|
||
|
else:
|
||
|
return sum == exactsum
|
||
|
|
||
|
class MinSumConstraint(Constraint):
|
||
|
"""
|
||
|
Constraint enforcing that values of given variables sum at least
|
||
|
to a given amount
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> problem = Problem()
|
||
|
>>> problem.addVariables(["a", "b"], [1, 2])
|
||
|
>>> problem.addConstraint(MinSumConstraint(3))
|
||
|
>>> sorted(sorted(x.items()) for x in problem.getSolutions())
|
||
|
[[('a', 1), ('b', 2)], [('a', 2), ('b', 1)], [('a', 2), ('b', 2)]]
|
||
|
"""#"""
|
||
|
|
||
|
def __init__(self, minsum, multipliers=None):
|
||
|
"""
|
||
|
@param minsum: Value to be considered as the minimum sum
|
||
|
@type minsum: number
|
||
|
@param multipliers: If given, variable values will be multiplied by
|
||
|
the given factors before being summed to be checked
|
||
|
@type multipliers: sequence of numbers
|
||
|
"""
|
||
|
self._minsum = minsum
|
||
|
self._multipliers = multipliers
|
||
|
|
||
|
def __call__(self, variables, domains, assignments, forwardcheck=False):
|
||
|
for variable in variables:
|
||
|
if variable not in assignments:
|
||
|
return True
|
||
|
else:
|
||
|
multipliers = self._multipliers
|
||
|
minsum = self._minsum
|
||
|
sum = 0
|
||
|
if multipliers:
|
||
|
for variable, multiplier in zip(variables, multipliers):
|
||
|
sum += assignments[variable]*multiplier
|
||
|
else:
|
||
|
for variable in variables:
|
||
|
sum += assignments[variable]
|
||
|
if type(sum) is float:
|
||
|
sum = round(sum, 10)
|
||
|
return sum >= minsum
|
||
|
|
||
|
class InSetConstraint(Constraint):
|
||
|
"""
|
||
|
Constraint enforcing that values of given variables are present in
|
||
|
the given set
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> problem = Problem()
|
||
|
>>> problem.addVariables(["a", "b"], [1, 2])
|
||
|
>>> problem.addConstraint(InSetConstraint([1]))
|
||
|
>>> sorted(sorted(x.items()) for x in problem.getSolutions())
|
||
|
[[('a', 1), ('b', 1)]]
|
||
|
"""#"""
|
||
|
|
||
|
def __init__(self, set):
|
||
|
"""
|
||
|
@param set: Set of allowed values
|
||
|
@type set: set
|
||
|
"""
|
||
|
self._set = set
|
||
|
|
||
|
def __call__(self, variables, domains, assignments, forwardcheck=False):
|
||
|
# preProcess() will remove it.
|
||
|
raise RuntimeError, "Can't happen"
|
||
|
|
||
|
def preProcess(self, variables, domains, constraints, vconstraints):
|
||
|
set = self._set
|
||
|
for variable in variables:
|
||
|
domain = domains[variable]
|
||
|
for value in domain[:]:
|
||
|
if value not in set:
|
||
|
domain.remove(value)
|
||
|
vconstraints[variable].remove((self, variables))
|
||
|
constraints.remove((self, variables))
|
||
|
|
||
|
class NotInSetConstraint(Constraint):
|
||
|
"""
|
||
|
Constraint enforcing that values of given variables are not present in
|
||
|
the given set
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> problem = Problem()
|
||
|
>>> problem.addVariables(["a", "b"], [1, 2])
|
||
|
>>> problem.addConstraint(NotInSetConstraint([1]))
|
||
|
>>> sorted(sorted(x.items()) for x in problem.getSolutions())
|
||
|
[[('a', 2), ('b', 2)]]
|
||
|
"""#"""
|
||
|
|
||
|
def __init__(self, set):
|
||
|
"""
|
||
|
@param set: Set of disallowed values
|
||
|
@type set: set
|
||
|
"""
|
||
|
self._set = set
|
||
|
|
||
|
def __call__(self, variables, domains, assignments, forwardcheck=False):
|
||
|
# preProcess() will remove it.
|
||
|
raise RuntimeError, "Can't happen"
|
||
|
|
||
|
def preProcess(self, variables, domains, constraints, vconstraints):
|
||
|
set = self._set
|
||
|
for variable in variables:
|
||
|
domain = domains[variable]
|
||
|
for value in domain[:]:
|
||
|
if value in set:
|
||
|
domain.remove(value)
|
||
|
vconstraints[variable].remove((self, variables))
|
||
|
constraints.remove((self, variables))
|
||
|
|
||
|
class SomeInSetConstraint(Constraint):
|
||
|
"""
|
||
|
Constraint enforcing that at least some of the values of given
|
||
|
variables must be present in a given set
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> problem = Problem()
|
||
|
>>> problem.addVariables(["a", "b"], [1, 2])
|
||
|
>>> problem.addConstraint(SomeInSetConstraint([1]))
|
||
|
>>> sorted(sorted(x.items()) for x in problem.getSolutions())
|
||
|
[[('a', 1), ('b', 1)], [('a', 1), ('b', 2)], [('a', 2), ('b', 1)]]
|
||
|
"""#"""
|
||
|
|
||
|
def __init__(self, set, n=1, exact=False):
|
||
|
"""
|
||
|
@param set: Set of values to be checked
|
||
|
@type set: set
|
||
|
@param n: Minimum number of assigned values that should be present
|
||
|
in set (default is 1)
|
||
|
@type n: int
|
||
|
@param exact: Whether the number of assigned values which are
|
||
|
present in set must be exactly C{n}
|
||
|
@type exact: bool
|
||
|
"""
|
||
|
self._set = set
|
||
|
self._n = n
|
||
|
self._exact = exact
|
||
|
|
||
|
def __call__(self, variables, domains, assignments, forwardcheck=False):
|
||
|
set = self._set
|
||
|
missing = 0
|
||
|
found = 0
|
||
|
for variable in variables:
|
||
|
if variable in assignments:
|
||
|
found += assignments[variable] in set
|
||
|
else:
|
||
|
missing += 1
|
||
|
if missing:
|
||
|
if self._exact:
|
||
|
if not (found <= self._n <= missing+found):
|
||
|
return False
|
||
|
else:
|
||
|
if self._n > missing+found:
|
||
|
return False
|
||
|
if forwardcheck and self._n-found == missing:
|
||
|
# All unassigned variables must be assigned to
|
||
|
# values in the set.
|
||
|
for variable in variables:
|
||
|
if variable not in assignments:
|
||
|
domain = domains[variable]
|
||
|
for value in domain[:]:
|
||
|
if value not in set:
|
||
|
domain.hideValue(value)
|
||
|
if not domain:
|
||
|
return False
|
||
|
else:
|
||
|
if self._exact:
|
||
|
if found != self._n:
|
||
|
return False
|
||
|
else:
|
||
|
if found < self._n:
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
class SomeNotInSetConstraint(Constraint):
|
||
|
"""
|
||
|
Constraint enforcing that at least some of the values of given
|
||
|
variables must not be present in a given set
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> problem = Problem()
|
||
|
>>> problem.addVariables(["a", "b"], [1, 2])
|
||
|
>>> problem.addConstraint(SomeNotInSetConstraint([1]))
|
||
|
>>> sorted(sorted(x.items()) for x in problem.getSolutions())
|
||
|
[[('a', 1), ('b', 2)], [('a', 2), ('b', 1)], [('a', 2), ('b', 2)]]
|
||
|
"""#"""
|
||
|
|
||
|
def __init__(self, set, n=1, exact=False):
|
||
|
"""
|
||
|
@param set: Set of values to be checked
|
||
|
@type set: set
|
||
|
@param n: Minimum number of assigned values that should not be present
|
||
|
in set (default is 1)
|
||
|
@type n: int
|
||
|
@param exact: Whether the number of assigned values which are
|
||
|
not present in set must be exactly C{n}
|
||
|
@type exact: bool
|
||
|
"""
|
||
|
self._set = set
|
||
|
self._n = n
|
||
|
self._exact = exact
|
||
|
|
||
|
def __call__(self, variables, domains, assignments, forwardcheck=False):
|
||
|
set = self._set
|
||
|
missing = 0
|
||
|
found = 0
|
||
|
for variable in variables:
|
||
|
if variable in assignments:
|
||
|
found += assignments[variable] not in set
|
||
|
else:
|
||
|
missing += 1
|
||
|
if missing:
|
||
|
if self._exact:
|
||
|
if not (found <= self._n <= missing+found):
|
||
|
return False
|
||
|
else:
|
||
|
if self._n > missing+found:
|
||
|
return False
|
||
|
if forwardcheck and self._n-found == missing:
|
||
|
# All unassigned variables must be assigned to
|
||
|
# values not in the set.
|
||
|
for variable in variables:
|
||
|
if variable not in assignments:
|
||
|
domain = domains[variable]
|
||
|
for value in domain[:]:
|
||
|
if value in set:
|
||
|
domain.hideValue(value)
|
||
|
if not domain:
|
||
|
return False
|
||
|
else:
|
||
|
if self._exact:
|
||
|
if found != self._n:
|
||
|
return False
|
||
|
else:
|
||
|
if found < self._n:
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
import doctest
|
||
|
doctest.testmod()
|
||
|
|