You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pollen/map.rkt

251 lines
9.9 KiB
Racket

#lang racket/base
(require xml xml/path racket/list racket/string racket/contract racket/match racket/set)
(require "tools.rkt" "world.rkt" "decode.rkt")
(module+ test (require rackunit))
; get the values out of the file, or make them up
(define map-file (build-path START_DIR DEFAULT_MAP))
(define map-main empty)
;; todo: this ain't a function
(if (file-exists? map-file)
; load it, or ...
(set! map-main (dynamic-require map-file POLLEN_ROOT))
; ... synthesize it
(let ([files (directory-list START_DIR)])
(set! files (map remove-ext (filter (λ(x) (has-ext? x POLLEN_SOURCE_EXT)) files)))
(set! map-main (make-tagged-xexpr 'map-main empty (map path->string files)))))
;; todo: restrict this test
;; all names must be unique
(define/contract (map-tree? x)
(any/c . -> . boolean?)
(and (tagged-xexpr? x)
;; all locations must be unique. Check this by converting x to a list of strings ...
(let ([locations (map ->string (flatten (remove-attrs x)))])
;; and then coercing to set (because set impliedly enforces uniqueness)
;; If set has same number of elements as original, all are unique.
(= (len (apply set locations)) (len locations)))))
;; recursively processes tree, converting map locations & their parents into xexprs of this shape:
;; '(location ((parent "parent")))
(define/contract (add-parents x [parent empty])
((map-tree?) (xexpr-tag?) . ->* . map-tree?)
; disallow map-main as parent tag
; (when (equal? parent 'map-main) (set! parent empty))
(match x
;; this pattern signifies next level in hierarchy
;; where first element is new parent, and rest are children.
[(list (? xexpr-tag? next-parent) children ...)
(let-values ([(tag attr _) (break-tagged-xexpr (add-parents next-parent parent))])
;; xexpr with tag as name, parent as attr, children as elements with tag as next parent
(make-tagged-xexpr tag attr (map (λ(c) (add-parents c tag)) children)))]
;; single map entry: convert to xexpr with parent
[else (make-tagged-xexpr (->symbol x) (make-xexpr-attr 'parent (->string parent)))]))
(module+ test
(define test-map `(map-main "foo" "bar" ,(map-topic "one" (map-topic "two" "three"))))
(check-equal? (add-parents test-map)
'(map-main ((parent "")) (foo ((parent "map-main"))) (bar ((parent "map-main"))) (one ((parent "map-main")) (two ((parent "one")) (three ((parent "two"))))))))
;; remove parents from tree (i.e., just remove attrs)
;; is not the inverse of add-parents, i.e., you do not get back your original input.
(define/contract (remove-parents mt)
(map-tree? . -> . map-tree?)
(remove-attrs mt))
(module+ test
(check-equal? (remove-parents
'(map-main ((parent "")) (foo ((parent ""))) (bar ((parent "")))
(one ((parent "")) (two ((parent "one")) (three ((parent "two")))))))
'(map-main (foo) (bar) (one (two (three))))))
;; todo: what is this for?
(define/contract (main->tree main)
(tagged-xexpr? . -> . map-tree?)
(let-values ([(nx metas) (extract-tag-from-xexpr 'meta main)])
(add-parents nx)))
(module+ test
(define mt-map `(map-main "foo" "bar" ,(map-topic "one" (map-topic "two" "three")) (meta "foo" "bar")))
(check-equal? (main->tree mt-map)
'(map-main ((parent "")) (foo ((parent "map-main"))) (bar ((parent "map-main"))) (one ((parent "map-main")) (two ((parent "one")) (three ((parent "two"))))))))
;; todo: what is this for? to have default input?
(define tree (main->tree map-main))
(define/contract (map-key? x)
(any/c . -> . boolean?)
;; OK for map-key to be #f
(or (symbol? x) (string? x) (eq? x #f)))
;; return the parent of a given name
(define/contract (parent element [tree tree])
((map-key?) (map-tree?) . ->* . (or/c string? boolean?))
(and element (let ([result (se-path* `(,(->symbol element) #:parent) tree)])
(and result (->string result))))) ; se-path* returns #f if nothing found
(module+ test
(define test-tree (main->tree test-map))
(check-equal? (parent 'three test-tree) "two")
(check-equal? (parent "three" test-tree) "two")
(check-false (parent 'nonexistent-name test-tree)))
; get children of a particular element
(define/contract (children element [tree tree])
((map-key?) (map-tree?) . ->* . (or/c list? boolean?))
;; se-path*/list returns '() if nothing found
(and element (let ([children (se-path*/list `(,(->symbol element)) tree)])
; If there are sublists, just take first element
(and (not (empty? children)) (map (λ(i) (->string (if (list? i) (car i) i))) children)))))
(module+ test
(check-equal? (children 'one test-tree) (list "two"))
(check-equal? (children 'two test-tree) (list "three"))
(check-false (children 'three test-tree))
(check-false (children 'fooburger test-tree)))
;; find all siblings on current level: go up to parent and ask for children
(define/contract (siblings element [tree tree])
;; this never returns false: element is always a sibling of itself.
;; todo: how to use input value in contract? e.g., to check that element is part of output list
((map-key?) (map-tree?) . ->* . (or/c list? boolean?))
(children (parent element tree) tree))
(module+ test
(check-equal? (siblings 'one test-tree) '("foo" "bar" "one"))
(check-equal? (siblings 'foo test-tree) '("foo" "bar" "one"))
(check-equal? (siblings 'two test-tree) '("two"))
(check-false (siblings 'invalid-key test-tree)))
;; helper function
(define/contract (side-siblings side element [tree tree])
((symbol? map-key?) (map-tree?) . ->* . (or/c list? boolean?))
(define result ((if (equal? side 'left) takef takef-right)
(siblings element tree)
(λ(i) (not (equal? (->string element) (->string i))))))
(and (not (empty? result)) result))
(define/contract (map-split element elements)
(map-key? (listof map-key?) . -> . (values (listof map-key?) (listof map-key?)))
(define-values (left right) (splitf-at elements
(λ(e) (not (equal? (->string e) (->string element))))))
(values left (cdr right)))
(module+ test
(check-equal? (values->list (map-split 'bar (siblings 'bar test-tree))) (list '("foo") '("one"))))
;; siblings to the left of target element (i.e., precede in map order)
(define (left-siblings element [tree tree])
(side-siblings 'left element tree))
(module+ test
(check-equal? (left-siblings 'one test-tree) '("foo" "bar"))
(check-false (left-siblings 'foo test-tree)))
;; siblings to the right of target element (i.e., follow in map order)
(define (right-siblings element [tree tree])
(side-siblings 'right element tree))
(module+ test
(check-false (right-siblings 'one test-tree))
(check-equal? (right-siblings 'foo test-tree) '("bar" "one")))
;; get element immediately to the left in map
(define/contract (left-sibling element [tree tree])
((map-key?) (map-tree?) . ->* . (or/c string? boolean?))
(define siblings (left-siblings element tree))
(and siblings (last siblings)))
(module+ test
(check-equal? (left-sibling 'bar test-tree) "foo")
(check-false (left-sibling 'foo test-tree)))
;; get element immediately to the right in map
(define/contract (right-sibling element [tree tree])
((map-key?) (map-tree?) . ->* . (or/c string? boolean?))
(define siblings (right-siblings element tree))
(and siblings (first siblings)))
(module+ test
(check-equal? (right-sibling 'foo test-tree) "bar")
(check-false (right-sibling 'one test-tree)))
;; flatten tree to sequence
(define/contract (make-page-sequence [tree tree])
(map-tree? . -> . (listof string?))
; use cdr to get rid of main-map tag at front
(map ->string (cdr (flatten (remove-parents tree)))))
(module+ test
(check-equal? (make-page-sequence test-tree) '("foo" "bar" "one" "two" "three")))
;; helper function for get-previous-pages and get-next-pages
(define/contract (adjacent-pages side element [tree tree])
((map-key? symbol?) (map-tree?) . ->* . (or/c list? boolean?))
(define result ((if (equal? side 'left) takef takef-right)
(make-page-sequence tree) (λ(y) (not (equal? (->string element) (->string y))))))
(and (not (empty? result)) result))
(module+ test
(check-equal? (adjacent-pages 'left 'one test-tree) '("foo" "bar"))
(check-equal? (adjacent-pages 'left 'three test-tree) '("foo" "bar" "one" "two"))
(check-false (adjacent-pages 'left 'foo test-tree)))
;; get sequence of earlier pages
(define/contract (previous-pages element [tree tree])
((map-key?) (map-tree?) . ->* . (or/c list? boolean?))
(adjacent-pages 'left element tree))
(module+ test
(check-equal? (previous-pages 'one test-tree) '("foo" "bar"))
(check-equal? (previous-pages 'three test-tree) '("foo" "bar" "one" "two"))
(check-false (previous-pages 'foo test-tree)))
;; get sequence of next pages
(define (next-pages element [tree tree])
((map-key?) (map-tree?) . ->* . (or/c list? boolean?))
(adjacent-pages 'right element tree))
(module+ test
(check-equal? (next-pages 'foo test-tree) '("bar" "one" "two" "three"))
(check-equal? (next-pages 'one test-tree) '("two" "three"))
(check-false (next-pages 'three test-tree)))
;; get page immediately previous
(define/contract (previous-page element [tree tree])
((map-key?) (map-tree?) . ->* . (or/c string? boolean?))
(define result (previous-pages element tree))
(and result (last result)))
(module+ test
(check-equal? (previous-page 'one test-tree) "bar")
(check-equal? (previous-page 'three test-tree) "two")
(check-false (previous-page 'foo test-tree)))
;; get page immediately next
(define (next-page element [tree tree])
((map-key?) (map-tree?) . ->* . (or/c string? boolean?))
(define result (next-pages element tree))
(and result (first result)))
(module+ test
(check-equal? (next-page 'foo test-tree) "bar")
(check-equal? (next-page 'one test-tree) "two")
(check-false (next-page 'three test-tree)))
(provide (all-defined-out))