#lang racket/base (require xml xml/path racket/list racket/string racket/contract racket/match racket/set) (require "tools.rkt" "world.rkt" "decode.rkt") (module+ test (require rackunit)) ; get the values out of the file, or make them up (define map-file (build-path START_DIR DEFAULT_MAP)) (define map-main empty) ;; todo: this ain't a function (if (file-exists? map-file) ; load it, or ... (set! map-main (dynamic-require map-file POLLEN_ROOT)) ; ... synthesize it (let ([files (directory-list START_DIR)]) (set! files (map remove-ext (filter (λ(x) (has-ext? x POLLEN_SOURCE_EXT)) files))) (set! map-main (make-tagged-xexpr 'map-main empty (map path->string files))))) ;; todo: restrict this test ;; all names must be unique (define/contract (map-tree? x) (any/c . -> . boolean?) (and (tagged-xexpr? x) ;; all locations must be unique. Check this by converting x to a list of strings ... (let ([locations (map ->string (flatten (remove-attrs x)))]) ;; and then coercing to set (because set impliedly enforces uniqueness) ;; If set has same number of elements as original, all are unique. (= (len (apply set locations)) (len locations))))) ;; recursively processes tree, converting map locations & their parents into xexprs of this shape: ;; '(location ((parent "parent"))) (define/contract (add-parents x [parent empty]) ((map-tree?) (xexpr-tag?) . ->* . map-tree?) ; disallow map-main as parent tag ; (when (equal? parent 'map-main) (set! parent empty)) (match x ;; this pattern signifies next level in hierarchy ;; where first element is new parent, and rest are children. [(list (? xexpr-tag? next-parent) children ...) (let-values ([(tag attr _) (break-tagged-xexpr (add-parents next-parent parent))]) ;; xexpr with tag as name, parent as attr, children as elements with tag as next parent (make-tagged-xexpr tag attr (map (λ(c) (add-parents c tag)) children)))] ;; single map entry: convert to xexpr with parent [else (make-tagged-xexpr (->symbol x) (make-xexpr-attr 'parent (->string parent)))])) (module+ test (define test-map `(map-main "foo" "bar" ,(map-topic "one" (map-topic "two" "three")))) (check-equal? (add-parents test-map) '(map-main ((parent "")) (foo ((parent "map-main"))) (bar ((parent "map-main"))) (one ((parent "map-main")) (two ((parent "one")) (three ((parent "two")))))))) ;; remove parents from tree (i.e., just remove attrs) ;; is not the inverse of add-parents, i.e., you do not get back your original input. (define/contract (remove-parents mt) (map-tree? . -> . map-tree?) (remove-attrs mt)) (module+ test (check-equal? (remove-parents '(map-main ((parent "")) (foo ((parent ""))) (bar ((parent ""))) (one ((parent "")) (two ((parent "one")) (three ((parent "two"))))))) '(map-main (foo) (bar) (one (two (three)))))) ;; todo: what is this for? (define/contract (main->tree main) (tagged-xexpr? . -> . map-tree?) (let-values ([(nx metas) (extract-tag-from-xexpr 'meta main)]) (add-parents nx))) (module+ test (define mt-map `(map-main "foo" "bar" ,(map-topic "one" (map-topic "two" "three")) (meta "foo" "bar"))) (check-equal? (main->tree mt-map) '(map-main ((parent "")) (foo ((parent "map-main"))) (bar ((parent "map-main"))) (one ((parent "map-main")) (two ((parent "one")) (three ((parent "two")))))))) ;; todo: what is this for? to have default input? (define tree (main->tree map-main)) (define/contract (map-key? x) (any/c . -> . boolean?) ;; OK for map-key to be #f (or (symbol? x) (string? x) (eq? x #f))) ;; return the parent of a given name (define/contract (parent element [tree tree]) ((map-key?) (map-tree?) . ->* . (or/c string? boolean?)) (and element (let ([result (se-path* `(,(->symbol element) #:parent) tree)]) (and result (->string result))))) ; se-path* returns #f if nothing found (module+ test (define test-tree (main->tree test-map)) (check-equal? (parent 'three test-tree) "two") (check-equal? (parent "three" test-tree) "two") (check-false (parent 'nonexistent-name test-tree))) ; get children of a particular element (define/contract (children element [tree tree]) ((map-key?) (map-tree?) . ->* . (or/c list? boolean?)) ;; se-path*/list returns '() if nothing found (and element (let ([children (se-path*/list `(,(->symbol element)) tree)]) ; If there are sublists, just take first element (and (not (empty? children)) (map (λ(i) (->string (if (list? i) (car i) i))) children))))) (module+ test (check-equal? (children 'one test-tree) (list "two")) (check-equal? (children 'two test-tree) (list "three")) (check-false (children 'three test-tree)) (check-false (children 'fooburger test-tree))) ;; find all siblings on current level: go up to parent and ask for children (define/contract (siblings element [tree tree]) ;; this never returns false: element is always a sibling of itself. ;; todo: how to use input value in contract? e.g., to check that element is part of output list ((map-key?) (map-tree?) . ->* . (or/c list? boolean?)) (children (parent element tree) tree)) (module+ test (check-equal? (siblings 'one test-tree) '("foo" "bar" "one")) (check-equal? (siblings 'foo test-tree) '("foo" "bar" "one")) (check-equal? (siblings 'two test-tree) '("two")) (check-false (siblings 'invalid-key test-tree))) ;; helper function (define/contract (side-siblings side element [tree tree]) ((symbol? map-key?) (map-tree?) . ->* . (or/c list? boolean?)) (define result ((if (equal? side 'left) takef takef-right) (siblings element tree) (λ(i) (not (equal? (->string element) (->string i)))))) (and (not (empty? result)) result)) (define/contract (map-split element elements) (map-key? (listof map-key?) . -> . (values (listof map-key?) (listof map-key?))) (define-values (left right) (splitf-at elements (λ(e) (not (equal? (->string e) (->string element)))))) (values left (cdr right))) (module+ test (check-equal? (values->list (map-split 'bar (siblings 'bar test-tree))) (list '("foo") '("one")))) ;; siblings to the left of target element (i.e., precede in map order) (define (left-siblings element [tree tree]) (side-siblings 'left element tree)) (module+ test (check-equal? (left-siblings 'one test-tree) '("foo" "bar")) (check-false (left-siblings 'foo test-tree))) ;; siblings to the right of target element (i.e., follow in map order) (define (right-siblings element [tree tree]) (side-siblings 'right element tree)) (module+ test (check-false (right-siblings 'one test-tree)) (check-equal? (right-siblings 'foo test-tree) '("bar" "one"))) ;; get element immediately to the left in map (define/contract (left-sibling element [tree tree]) ((map-key?) (map-tree?) . ->* . (or/c string? boolean?)) (define siblings (left-siblings element tree)) (and siblings (last siblings))) (module+ test (check-equal? (left-sibling 'bar test-tree) "foo") (check-false (left-sibling 'foo test-tree))) ;; get element immediately to the right in map (define/contract (right-sibling element [tree tree]) ((map-key?) (map-tree?) . ->* . (or/c string? boolean?)) (define siblings (right-siblings element tree)) (and siblings (first siblings))) (module+ test (check-equal? (right-sibling 'foo test-tree) "bar") (check-false (right-sibling 'one test-tree))) ;; flatten tree to sequence (define/contract (make-page-sequence [tree tree]) (map-tree? . -> . (listof string?)) ; use cdr to get rid of main-map tag at front (map ->string (cdr (flatten (remove-parents tree))))) (module+ test (check-equal? (make-page-sequence test-tree) '("foo" "bar" "one" "two" "three"))) ;; helper function for get-previous-pages and get-next-pages (define/contract (adjacent-pages side element [tree tree]) ((map-key? symbol?) (map-tree?) . ->* . (or/c list? boolean?)) (define result ((if (equal? side 'left) takef takef-right) (make-page-sequence tree) (λ(y) (not (equal? (->string element) (->string y)))))) (and (not (empty? result)) result)) (module+ test (check-equal? (adjacent-pages 'left 'one test-tree) '("foo" "bar")) (check-equal? (adjacent-pages 'left 'three test-tree) '("foo" "bar" "one" "two")) (check-false (adjacent-pages 'left 'foo test-tree))) ;; get sequence of earlier pages (define/contract (previous-pages element [tree tree]) ((map-key?) (map-tree?) . ->* . (or/c list? boolean?)) (adjacent-pages 'left element tree)) (module+ test (check-equal? (previous-pages 'one test-tree) '("foo" "bar")) (check-equal? (previous-pages 'three test-tree) '("foo" "bar" "one" "two")) (check-false (previous-pages 'foo test-tree))) ;; get sequence of next pages (define (next-pages element [tree tree]) ((map-key?) (map-tree?) . ->* . (or/c list? boolean?)) (adjacent-pages 'right element tree)) (module+ test (check-equal? (next-pages 'foo test-tree) '("bar" "one" "two" "three")) (check-equal? (next-pages 'one test-tree) '("two" "three")) (check-false (next-pages 'three test-tree))) ;; get page immediately previous (define/contract (previous-page element [tree tree]) ((map-key?) (map-tree?) . ->* . (or/c string? boolean?)) (define result (previous-pages element tree)) (and result (last result))) (module+ test (check-equal? (previous-page 'one test-tree) "bar") (check-equal? (previous-page 'three test-tree) "two") (check-false (previous-page 'foo test-tree))) ;; get page immediately next (define (next-page element [tree tree]) ((map-key?) (map-tree?) . ->* . (or/c string? boolean?)) (define result (next-pages element tree)) (and result (first result))) (module+ test (check-equal? (next-page 'foo test-tree) "bar") (check-equal? (next-page 'one test-tree) "two") (check-false (next-page 'three test-tree))) (provide (all-defined-out))