#lang racket/base (require xml xml/path racket/list racket/string racket/contract racket/match racket/set) (require "tools.rkt" "world.rkt" "decode.rkt") (module+ test (require rackunit)) (provide (all-defined-out)) ; get the values out of the file, or make them up (define pmap-file (build-path START_DIR DEFAULT_POLLEN_MAP)) (define pmap-main empty) ;; todo: this ain't a function (if (file-exists? pmap-file) ; load it, or ... (set! pmap-main (dynamic-require pmap-file POLLEN_ROOT)) ; ... synthesize it (let ([files (directory-list START_DIR)]) (set! files (map remove-ext (filter (λ(x) (has-ext? x POLLEN_SOURCE_EXT)) files))) (set! pmap-main (make-tagged-xexpr 'pmap-root empty (map path->string files))))) ;; recursively processes map, converting map locations & their parents into xexprs of this shape: ;; '(location ((parent "parent"))) (define/contract (add-parents x [parent empty]) ((tagged-xexpr?) (xexpr-tag?) . ->* . pmap?) ; disallow map-main as parent tag ; (when (equal? parent 'map-main) (set! parent empty)) (match x ;; this pattern signifies next level in hierarchy ;; where first element is new parent, and rest are children. [(list (? xexpr-tag? next-parent) children ...) (let-values ([(tag attr _) (break-tagged-xexpr (add-parents next-parent parent))]) ;; xexpr with tag as name, parent as attr, children as elements with tag as next parent (make-tagged-xexpr tag attr (map (λ(c) (add-parents c tag)) children)))] ;; single map entry: convert to xexpr with parent [else (make-tagged-xexpr (->symbol x) (make-xexpr-attr POLLEN_MAP_PARENT_KEY (->string parent)))])) (module+ test (define test-pmap-main `(pmap-main "foo" "bar" (one (two "three")))) (check-equal? (main->pmap test-pmap-main) `(pmap-main ((,POLLEN_MAP_PARENT_KEY "")) (foo ((,POLLEN_MAP_PARENT_KEY "pmap-main"))) (bar ((,POLLEN_MAP_PARENT_KEY "pmap-main"))) (one ((,POLLEN_MAP_PARENT_KEY "pmap-main")) (two ((,POLLEN_MAP_PARENT_KEY "one")) (three ((,POLLEN_MAP_PARENT_KEY "two")))))))) ;; this sets default input for following functions (define/contract (main->pmap tx) (tagged-xexpr? . -> . pmap?) (add-parents tx)) (define pmap (main->pmap pmap-main)) ;; remove parents from map (i.e., just remove attrs) ;; is not the inverse of add-parents, i.e., you do not get back your original input. (define/contract (remove-parents mt) (pmap? . -> . tagged-xexpr?) (remove-attrs mt)) (module+ test (check-equal? (remove-parents `(pmap-main ((,POLLEN_MAP_PARENT_KEY "")) (foo ((,POLLEN_MAP_PARENT_KEY ""))) (bar ((,POLLEN_MAP_PARENT_KEY ""))) (one ((,POLLEN_MAP_PARENT_KEY "")) (two ((,POLLEN_MAP_PARENT_KEY "one")) (three ((,POLLEN_MAP_PARENT_KEY "two"))))))) '(pmap-main (foo) (bar) (one (two (three)))))) (module+ test (let ([sample-main `(pmap-root "foo" "bar" (one (two "three")))]) (check-equal? (main->pmap sample-main) `(pmap-root ((,POLLEN_MAP_PARENT_KEY "")) (foo ((,POLLEN_MAP_PARENT_KEY "pmap-root"))) (bar ((,POLLEN_MAP_PARENT_KEY "pmap-root"))) (one ((,POLLEN_MAP_PARENT_KEY "pmap-root")) (two ((,POLLEN_MAP_PARENT_KEY "one")) (three ((,POLLEN_MAP_PARENT_KEY "two"))))))))) ;; return the parent of a given name (define/contract (parent element [pmap pmap]) ((pmap-key?) (pmap?) . ->* . (or/c string? boolean?)) (and element (let ([result (se-path* `(,(->symbol element) #:parent) pmap)]) (and result (->string result))))) ; se-path* returns #f if nothing found (module+ test (define test-pmap (main->pmap test-pmap-main)) (check-equal? (parent 'three test-pmap) "two") (check-equal? (parent "three" test-pmap) "two") (check-false (parent 'nonexistent-name test-pmap))) ; get children of a particular element (define/contract (children element [pmap pmap]) ((pmap-key?) (pmap?) . ->* . (or/c list? boolean?)) ;; se-path*/list returns '() if nothing found (and element (let ([children (se-path*/list `(,(->symbol element)) pmap)]) ; If there are sublists, just take first element (and (not (empty? children)) (map (λ(i) (->string (if (list? i) (car i) i))) children))))) (module+ test (check-equal? (children 'one test-pmap) (list "two")) (check-equal? (children 'two test-pmap) (list "three")) (check-false (children 'three test-pmap)) (check-false (children 'fooburger test-pmap))) ;; find all siblings on current level: go up to parent and ask for children (define/contract (siblings element [pmap pmap]) ;; this never returns false: element is always a sibling of itself. ;; todo: how to use input value in contract? e.g., to check that element is part of output list ((pmap-key?) (pmap?) . ->* . (or/c list? boolean?)) (children (parent element pmap) pmap)) (module+ test (check-equal? (siblings 'one test-pmap) '("foo" "bar" "one")) (check-equal? (siblings 'foo test-pmap) '("foo" "bar" "one")) (check-equal? (siblings 'two test-pmap) '("two")) (check-false (siblings 'invalid-key test-pmap))) (define/contract (siblings-split element [pmap pmap]) ((pmap-key?) (pmap?) . ->* . (values (or/c (listof pmap-key?) boolean?) (or/c (listof pmap-key?) boolean?))) (let-values ([(left right) (splitf-at (siblings element pmap) (λ(e) (not (equal? (->string e) (->string element)))))]) (values (if (empty? left) #f left) (if (empty? (cdr right)) #f (cdr right))))) (module+ test (check-equal? (values->list (siblings-split 'one test-pmap)) '(("foo" "bar") #f)) (check-equal? (values->list (siblings-split 'bar test-pmap)) (list '("foo") '("one")))) ;; siblings to the left of target element (i.e., precede in map order) (define (siblings-left element [pmap pmap]) (let-values ([(left right) (siblings-split element pmap)]) left)) (module+ test (check-equal? (siblings-left 'one test-pmap) '("foo" "bar")) (check-false (siblings-left 'foo test-pmap))) ;; siblings to the right of target element (i.e., follow in map order) (define (siblings-right element [pmap pmap]) (let-values ([(left right) (siblings-split element pmap)]) right)) (module+ test (check-false (siblings-right 'one test-pmap)) (check-equal? (siblings-right 'foo test-pmap) '("bar" "one"))) ;; get element immediately to the left in map (define/contract (sibling-previous element [pmap pmap]) ((pmap-key?) (pmap?) . ->* . (or/c string? boolean?)) (let ([siblings (siblings-left element pmap)]) (and siblings (last siblings)))) (module+ test (check-equal? (sibling-previous 'bar test-pmap) "foo") (check-false (sibling-previous 'foo test-pmap))) ;; get element immediately to the right in map (define/contract (sibling-next element [pmap pmap]) ((pmap-key?) (pmap?) . ->* . (or/c string? boolean?)) (let ([siblings (siblings-right element pmap)]) (and siblings (first siblings)))) (module+ test (check-equal? (sibling-next 'foo test-pmap) "bar") (check-false (sibling-next 'one test-pmap))) ;; flatten map to sequence (define/contract (all-pages [pmap pmap]) (pmap? . -> . (listof string?)) ; use cdr to get rid of main-map tag at front (map ->string (cdr (flatten (remove-parents pmap))))) (module+ test (check-equal? (all-pages test-pmap) '("foo" "bar" "one" "two" "three"))) ;; helper function for get-previous-pages and get-next-pages (define/contract (adjacent-pages side element [pmap pmap]) ((symbol? pmap-key?) (pmap?) . ->* . (or/c list? boolean?)) (let ([result ((if (equal? side 'left) takef takef-right) (all-pages pmap) (λ(y) (not (equal? (->string element) (->string y)))))]) (and (not (empty? result)) result))) (module+ test (check-equal? (adjacent-pages 'left 'one test-pmap) '("foo" "bar")) (check-equal? (adjacent-pages 'left 'three test-pmap) '("foo" "bar" "one" "two")) (check-false (adjacent-pages 'left 'foo test-pmap))) ;; get sequence of earlier pages (define/contract (previous-pages element [pmap pmap]) ((pmap-key?) (pmap?) . ->* . (or/c list? boolean?)) (adjacent-pages 'left element pmap)) (module+ test (check-equal? (previous-pages 'one test-pmap) '("foo" "bar")) (check-equal? (previous-pages 'three test-pmap) '("foo" "bar" "one" "two")) (check-false (previous-pages 'foo test-pmap))) ;; get sequence of next pages (define (next-pages element [pmap pmap]) ((pmap-key?) (pmap?) . ->* . (or/c list? boolean?)) (adjacent-pages 'right element pmap)) (module+ test (check-equal? (next-pages 'foo test-pmap) '("bar" "one" "two" "three")) (check-equal? (next-pages 'one test-pmap) '("two" "three")) (check-false (next-pages 'three test-pmap))) ;; get page immediately previous (define/contract (previous-page element [pmap pmap]) ((pmap-key?) (pmap?) . ->* . (or/c string? boolean?)) (let ([result (previous-pages element pmap)]) (and result (last result)))) (module+ test (check-equal? (previous-page 'one test-pmap) "bar") (check-equal? (previous-page 'three test-pmap) "two") (check-false (previous-page 'foo test-pmap))) ;; get page immediately next (define (next-page element [pmap pmap]) ((pmap-key?) (pmap?) . ->* . (or/c string? boolean?)) (let ([result (next-pages element pmap)]) (and result (first result)))) (module+ test (check-equal? (next-page 'foo test-pmap) "bar") (check-equal? (next-page 'one test-pmap) "two") (check-false (next-page 'three test-pmap))) (define/contract (pmap-decode . elements) (() #:rest (and/c ;; todo: how to put these contracts under a let? ;; all elements must be valid pmap keys (flat-named-contract 'valid-pmap-keys (λ(e) (andmap (λ(x) (pmap-key? #:loud #t x)) (filter-not whitespace? (flatten e))))) ;; they must also be unique (flat-named-contract 'unique-pmap-keys (λ(e) (elements-unique? #:loud #t (map ->string ; to make keys comparable (filter-not whitespace? (flatten e))))))) . ->* . pmap?) (main->pmap (decode (cons 'pmap-root elements) ; #:exclude-xexpr-tags 'em ; #:xexpr-tag-proc [xexpr-tag-proc (λ(x)x)] ; #:xexpr-attr-proc [xexpr-attr-proc (λ(x)x)] #:xexpr-elements-proc (λ(xs) (filter-not whitespace? xs)) ; #:block-xexpr-proc block-xexpr-proc ; #:inline-xexpr-proc [inline-xexpr-proc (λ(x)x)] )))