@ -97,20 +96,18 @@ Note that @racket[_txexpr-attrs-proc] will change the attributes of every tagged
]
The @racket[_txexpr-elements-proc] argument is a procedure that operates on the list of elements that represents the content of each tagged X-expression. Note that each element of an X-expression is subject to two passes through the decoder: once now, as a member of the list of elements, and also later, through its type-specific decoder (i.e., @racket[_string-proc], @racket[_symbol-proc], and so on).
The @racket[_txexpr-elements-proc] argument is a procedure that operates on the list of elements that represents the content of each tagged X-expression. Note that each element of an X-expression is subject to two passes through the decoder: once now, as a member of the list of elements, and also later, through its type-specific decoder (i.e., @racket[_string-proc], @racket[_entity-proc], and so on).
(decode tx #:txexpr-elements-proc (λ(es) (append-map (λ(e) (list e e)) es))
#:string-proc (λ(s) (string-upcase s)))
]
So why do you need @racket[_txexpr-elements-proc]? Because some types of element decoding depend on context, thus it's necessary to handle the elements as a group. For instance, the doubling function above, though useless, requires handling the element list as a whole, because elements are being added.
A more useful example: paragraph detection. The behavior is not merely a @racket[map] across each element:
So why do you need @racket[_txexpr-elements-proc]? Because some types of element decoding depend on context, thus it's necessary to handle the elements as a group. For instance, paragraph detection. The behavior is not merely a @racket[map] across each element, because elements are being removed and altered contextually:
The @racket[_string-proc], @racket[_symbol-proc], @racket[_valid-char-proc], and @racket[_cdata-proc] arguments are procedures that operate on X-expressions that are strings, symbols, valid-chars, and CDATA, respectively. Deliberately, the output contracts for these procedures accept any kind of X-expression (meaning, the procedure can change the X-expression type).
The @racket[_string-proc], @racket[_entity-proc], and @racket[_cdata-proc] arguments are procedures that operate on X-expressions that are strings, entities, and CDATA, respectively. Deliberately, the output contracts for these procedures accept any kind of X-expression (meaning, the procedure can change the X-expression type).
@examples[#:eval my-eval
(code:comment @#,t{A div with string, entity, character, and cdata elements})
(code:comment @#,t{A div with string, entity, and cdata elements})
(code:comment @#,t{The rulify function is selectively applied to each})
(print (decode tx #:string-proc rulify))
(print (decode tx #:symbol-proc rulify))
(print (decode tx #:valid-char-proc rulify))
(print (decode tx #:entity-proc rulify))
(print (decode tx #:cdata-proc rulify))
]
Note that entities come in two flavors —symbolic and numeric — and @racket[_entity-proc] affects both. If you only want to affect one or the other, you can add a test within @racket[_entity-proc]. Symbolic entities can be detected with @racket[symbol?], and numeric entities with @racket[valid-char?]:
The five previous procedures — @racket[_block-txexpr-proc], @racket[_inline-txexpr-proc], @racket[_string-proc], @racket[_entity-proc], and @racket[_cdata-proc] —can return either a single X-expression, or a list of X-expressions, which will be spliced into the parent at the same point.
For instance, earlier we saw how to double elements by using @racket[_txexpr-elements-proc]. But you can accomplish the same thing on a case-by-case basis by returning a list of values:
@examples[#:eval my-eval
(code:comment @#,t{A div with string, entity, and inline-txexpr elements})
(define tx `(div "Axl" amp (span "Slash")))
(define doubler (λ(x) (list x x)))
(code:comment @#,t{The doubler function is selectively applied to each type of element})
(print (decode tx #:string-proc doubler))
(print (decode tx #:entity-proc doubler))
(print (decode tx #:inline-txexpr-proc doubler))
]
Caution: when returning list values, it's possible to trip over the unavoidable ambiguity between a @racket[txexpr?] and a list of @racket[txexpr-element?]s that happens to begin with a symbolic entity:
@examples[#:eval my-eval
(code:comment @#,t{An ambiguous expression})
(define amb '(guitar "player-name"))
(and (txexpr-elements? amb) (txexpr? amb))
(code:comment @#,t{Ambiguity in context})
(define x '(gnr "Izzy" "Slash"))
(define rockit (λ(str) (list 'guitar str)))
(code:comment @#,t{Expecting '(gnr guitar "Izzy" guitar "Slash") from next line,
but return value will be treated as tagged X-expression})
(decode x #:string-proc rockit)
(code:comment @#,t{Changing the order makes it unambiguous})
(define rockit2 (λ(str) (list str 'guitar)))
(decode x #:string-proc rockit2)
]
The @racket[_tags-to-exclude] argument is a list of tags that will be exempted from decoding. Though you could get the same result by testing the input within the individual decoding functions, that's tedious and potentially slower.
@ -189,12 +223,11 @@ Finally, the @racket[_attrs-to-exclude] argument works the same way as @racket[_