#lang racket/base (require racket/base racket/match (prefix-in is: data/integer-set) syntax/stx yaragg/parser-tools/private-lex/util yaragg/parser-tools/private-lex/stx yaragg/parser-tools/private-lex/re yaragg/parser-tools/private-lex/deriv) (provide build-lexer) (define-syntax time-label (syntax-rules () ((_ l e ...) (begin (printf "~a: " l) (time (begin e ...)))))) ;; A table is either ;; - (vector-of (union #f nat)) ;; - (vector-of (vector-of (vector nat nat nat))) (define loc:integer-set-contents is:integer-set-contents) ;; dfa->1d-table : dfa -> (same as build-lexer) (define (dfa->1d-table dfa) (define state-table (make-vector (dfa-num-states dfa) #f)) (define transition-cache (make-hasheq)) (for ([trans (in-list (dfa-transitions dfa))]) (match-define (cons from-state all-chars/to) trans) (define flat-all-chars/to (sort (for*/list ([chars/to (in-list all-chars/to)] [char-ranges (in-value (loc:integer-set-contents (car chars/to)))] [to (in-value (cdr chars/to))] [char-range (in-list char-ranges)]) (define entry (vector (car char-range) (cdr char-range) to)) (hash-ref transition-cache entry (λ () (hash-set! transition-cache entry entry) entry))) < #:key (λ (v) (vector-ref v 0)))) (vector-set! state-table from-state (list->vector flat-all-chars/to))) state-table) (define loc:foldr is:foldr) ;; dfa->2d-table : dfa -> (same as build-lexer) (define (dfa->2d-table dfa) ;; char-table : (vector-of (union #f nat)) ;; The lexer table, one entry per state per char. ;; Each entry specifies a state to transition to. ;; #f indicates no transition (define char-table (make-vector (* 256 (dfa-num-states dfa)) #f)) ;; Fill the char-table vector (for* ([trans (in-list (dfa-transitions dfa))] [chars/to (in-list (cdr trans))]) (define from-state (car trans)) (define to-state (cdr chars/to)) (loc:foldr (λ (char _) (vector-set! char-table (bitwise-ior char (arithmetic-shift from-state 8)) to-state)) (void) (car chars/to))) char-table) ;; dfa->actions : dfa -> (vector-of (union #f syntax-object)) ;; The action for each final state, #f if the state isn't final (define (dfa->actions dfa) (define actions (make-vector (dfa-num-states dfa) #f)) (for ([state/action (in-list (dfa-final-states/actions dfa))]) (vector-set! actions (car state/action) (cdr state/action))) actions) ;; dfa->no-look : dfa -> (vector-of bool) ;; For each state whether the lexer can ignore the next input. ;; It can do this only if there are no transitions out of the ;; current state. (define (dfa->no-look dfa) (define no-look (make-vector (dfa-num-states dfa) #t)) (for ([trans (in-list (dfa-transitions dfa))]) (vector-set! no-look (car trans) #f)) no-look) (test-block ((d1 (make-dfa 1 1 (list) (list))) (d2 (make-dfa 4 1 (list (cons 2 2) (cons 3 3)) (list (cons 1 (list (cons (is:make-range 49 50) 1) (cons (is:make-range 51) 2))) (cons 2 (list (cons (is:make-range 49) 3)))))) (d3 (make-dfa 4 1 (list (cons 2 2) (cons 3 3)) (list (cons 1 (list (cons (is:make-range 100 200) 0) (cons (is:make-range 49 50) 1) (cons (is:make-range 51) 2))) (cons 2 (list (cons (is:make-range 49) 3))))))) ((dfa->2d-table d1) (make-vector 256 #f)) ((dfa->2d-table d2) (let ((v (make-vector 1024 #f))) (vector-set! v 305 1) (vector-set! v 306 1) (vector-set! v 307 2) (vector-set! v 561 3) v)) ((dfa->1d-table d1) (make-vector 1 #f)) ((dfa->1d-table d2) #(#f #(#(49 50 1) #(51 51 2)) #(#(49 49 3)) #f)) ((dfa->1d-table d3) #(#f #(#(49 50 1) #(51 51 2) #(100 200 0)) #(#(49 49 3)) #f)) ((dfa->actions d1) (vector #f)) ((dfa->actions d2) (vector #f #f 2 3)) ((dfa->no-look d1) (vector #t)) ((dfa->no-look d2) (vector #t #f #f #t))) ;; build-lexer : syntax-object list -> ;; (values table nat (vector-of (union #f syntax-object)) (vector-of bool) (list-of syntax-object)) ;; each syntax object has the form (re action) (define (build-lexer sos) (define s-re-acts (for/list ([so (in-list sos)]) (cons (parse (stx-car so)) (stx-car (stx-cdr so))))) (define cache (make-cache)) (define re-acts (for/list ([s-re-act (in-list s-re-acts)]) (cons (->re (car s-re-act) cache) (cdr s-re-act)))) (define dfa (build-dfa re-acts cache)) (define table (dfa->1d-table dfa)) ;(print-dfa dfa) #;(let ((num-states (vector-length table)) (num-vectors (length (filter values (vector->list table)))) (num-entries (apply + (map (λ (x) (if x (vector-length x) 0)) (vector->list table)))) (num-different-entries (let ((ht (make-hash))) (for-each (λ (x) (when x (for-each (λ (y) (hash-set! ht y #t)) (vector->list x)))) (vector->list table)) (length (hash-table-map ht cons))))) (printf "~a states, ~aKB\n" num-states (/ (* 4.0 (+ 2 num-states (* 2 num-vectors) num-entries (* 5 num-different-entries))) 1024))) (values table (dfa-start-state dfa) (dfa->actions dfa) (dfa->no-look dfa)))