|
|
|
#lang racket/base
|
|
|
|
(require yaragg/parser-tools/private-yacc/grammar
|
|
|
|
yaragg/parser-tools/private-yacc/lr0
|
|
|
|
yaragg/parser-tools/private-yacc/lalr
|
|
|
|
yaragg/parser-tools/private-yacc/parser-actions
|
|
|
|
racket/contract
|
|
|
|
racket/class)
|
|
|
|
|
|
|
|
;; Routine to build the LALR table
|
|
|
|
|
|
|
|
|
|
|
|
(provide/contract
|
|
|
|
(build-table (-> grammar? string? any/c
|
|
|
|
(vectorof (listof (cons/c (or/c term? non-term?) action?))))))
|
|
|
|
|
|
|
|
;; A parse-table is (vectorof (listof (cons/c gram-sym? action)))
|
|
|
|
;; A grouped-parse-table is (vectorof (listof (cons/c gram-sym? (listof action))))
|
|
|
|
|
|
|
|
;; make-parse-table : int -> parse-table
|
|
|
|
(define (make-parse-table num-states)
|
|
|
|
(make-vector num-states '()))
|
|
|
|
|
|
|
|
;; table-add!: parse-table nat symbol action ->
|
|
|
|
(define (table-add! table state-index symbol val)
|
|
|
|
(vector-set! table state-index (cons (cons symbol val)
|
|
|
|
(vector-ref table state-index))))
|
|
|
|
|
|
|
|
;; group-table : parse-table -> grouped-parse-table
|
|
|
|
(define (group-table table)
|
|
|
|
(for/vector ([state-entry (in-list (vector->list table))])
|
|
|
|
(define ht (make-hasheq))
|
|
|
|
(for* ([gs/actions (in-list state-entry)]
|
|
|
|
[group (in-value (hash-ref ht (car gs/actions) (λ () '())))]
|
|
|
|
#:unless (member (cdr gs/actions) group))
|
|
|
|
(hash-set! ht (car gs/actions) (cons (cdr gs/actions) group)))
|
|
|
|
(hash-map ht cons)))
|
|
|
|
|
|
|
|
;; table-map : (vectorof (listof (cons/c gram-sym? X))) (gram-sym? X -> Y) ->
|
|
|
|
;; (vectorof (listof (cons/c gram-sym? Y)))
|
|
|
|
(define (table-map f table)
|
|
|
|
(for/vector ([state-entry (in-list (vector->list table))])
|
|
|
|
(for/list ([gs/X (in-list state-entry)])
|
|
|
|
(cons (car gs/X) (f (car gs/X) (cdr gs/X))))))
|
|
|
|
|
|
|
|
(define (bit-vector-for-each f bv)
|
|
|
|
(let loop ([bv bv] [number 0])
|
|
|
|
(cond
|
|
|
|
[(zero? bv) (void)]
|
|
|
|
[(= 1 (bitwise-and 1 bv))
|
|
|
|
(f number)
|
|
|
|
(loop (arithmetic-shift bv -1) (add1 number))]
|
|
|
|
[else (loop (arithmetic-shift bv -1) (add1 number))])))
|
|
|
|
|
|
|
|
|
|
|
|
;; print-entry: symbol action output-port ->
|
|
|
|
;; prints the action a for lookahead sym to the given port
|
|
|
|
(define (print-entry sym a port)
|
|
|
|
(define s "\t~a\t\t\t\t\t~a\t~a\n")
|
|
|
|
(cond
|
|
|
|
[(shift? a) (fprintf port s sym "shift" (shift-state a))]
|
|
|
|
[(reduce? a) (fprintf port s sym "reduce" (prod-index (reduce-prod a)))]
|
|
|
|
[(accept? a) (fprintf port s sym "accept" "")]
|
|
|
|
[(goto? a) (fprintf port s sym "goto" (goto-state a))]))
|
|
|
|
|
|
|
|
|
|
|
|
;; count: ('a -> bool) * 'a list -> num
|
|
|
|
;; counts the number of elements in list that satisfy pred
|
|
|
|
(define (count pred list)
|
|
|
|
(cond
|
|
|
|
[(null? list) 0]
|
|
|
|
[(pred (car list)) (+ 1 (count pred (cdr list)))]
|
|
|
|
[else (count pred (cdr list))]))
|
|
|
|
|
|
|
|
;; display-parser: LR0-automaton grouped-parse-table (listof prod?) output-port ->
|
|
|
|
;; Prints out the parser given by table.
|
|
|
|
(define (display-parser a grouped-table prods port)
|
|
|
|
(define SR-conflicts 0)
|
|
|
|
(define RR-conflicts 0)
|
|
|
|
(for ([prod (in-list prods)])
|
|
|
|
(fprintf port
|
|
|
|
"~a\t~a\t=\t~a\n"
|
|
|
|
(prod-index prod)
|
|
|
|
(gram-sym-symbol (prod-lhs prod))
|
|
|
|
(map gram-sym-symbol (vector->list (prod-rhs prod)))))
|
|
|
|
|
|
|
|
(send a for-each-state
|
|
|
|
(λ (state)
|
|
|
|
(fprintf port "State ~a\n" (kernel-index state))
|
|
|
|
(for ([item (in-list (kernel-items state))])
|
|
|
|
(fprintf port "\t~a\n" (item->string item)))
|
|
|
|
(newline port)
|
|
|
|
(for ([gs/action (in-list (vector-ref grouped-table (kernel-index state)))])
|
|
|
|
(define sym (gram-sym-symbol (car gs/action)))
|
|
|
|
(define act (cdr gs/action))
|
|
|
|
(cond
|
|
|
|
[(null? act) (void)]
|
|
|
|
[(null? (cdr act))
|
|
|
|
(print-entry sym (car act) port)]
|
|
|
|
[else
|
|
|
|
(fprintf port "begin conflict:\n")
|
|
|
|
(when (> (count reduce? act) 1)
|
|
|
|
(set! RR-conflicts (add1 RR-conflicts)))
|
|
|
|
(when (> (count shift? act) 0)
|
|
|
|
(set! SR-conflicts (add1 SR-conflicts)))
|
|
|
|
(map (λ (x) (print-entry sym x port)) act)
|
|
|
|
(fprintf port "end conflict\n")]))
|
|
|
|
(newline port)))
|
|
|
|
|
|
|
|
(when (> SR-conflicts 0)
|
|
|
|
(fprintf port "~a shift/reduce conflict~a\n"
|
|
|
|
SR-conflicts
|
|
|
|
(if (= SR-conflicts 1) "" "s")))
|
|
|
|
(when (> RR-conflicts 0)
|
|
|
|
(fprintf port "~a reduce/reduce conflict~a\n"
|
|
|
|
RR-conflicts
|
|
|
|
(if (= RR-conflicts 1) "" "s"))))
|
|
|
|
|
|
|
|
;; resolve-conflict : (listof action?) -> action? bool bool
|
|
|
|
(define (resolve-conflict actions)
|
|
|
|
(cond
|
|
|
|
[(null? actions) (values (no-action) #f #f)]
|
|
|
|
[(null? (cdr actions)) (values (car actions) #f #f)]
|
|
|
|
[else
|
|
|
|
(define SR-conflict? (> (count shift? actions) 0))
|
|
|
|
(define RR-conflict? (> (count reduce? actions) 1))
|
|
|
|
(let loop ((current-guess #f)
|
|
|
|
(rest actions))
|
|
|
|
(cond
|
|
|
|
[(null? rest) (values current-guess SR-conflict? RR-conflict?)]
|
|
|
|
[(shift? (car rest)) (values (car rest) SR-conflict? RR-conflict?)]
|
|
|
|
[(not current-guess) (loop (car rest) (cdr rest))]
|
|
|
|
[(and (reduce? (car rest))
|
|
|
|
(< (prod-index (reduce-prod (car rest)))
|
|
|
|
(prod-index (reduce-prod current-guess))))
|
|
|
|
(loop (car rest) (cdr rest))]
|
|
|
|
[(accept? (car rest))
|
|
|
|
(eprintf "accept/reduce or accept/shift conflicts. Check the grammar for useless cycles of productions\n")
|
|
|
|
(loop current-guess (cdr rest))]
|
|
|
|
[else (loop current-guess (cdr rest))]))]))
|
|
|
|
|
|
|
|
;; resolve-conflicts : grouped-parse-table bool -> parse-table
|
|
|
|
(define (resolve-conflicts grouped-table suppress)
|
|
|
|
(define SR-conflicts 0)
|
|
|
|
(define RR-conflicts 0)
|
|
|
|
(define table (table-map
|
|
|
|
(λ (gs actions)
|
|
|
|
(define-values (action SR? RR?)
|
|
|
|
(resolve-conflict actions))
|
|
|
|
(when SR?
|
|
|
|
(set! SR-conflicts (add1 SR-conflicts)))
|
|
|
|
(when RR?
|
|
|
|
(set! RR-conflicts (add1 RR-conflicts)))
|
|
|
|
action)
|
|
|
|
grouped-table))
|
|
|
|
(unless suppress
|
|
|
|
(when (> SR-conflicts 0)
|
|
|
|
(eprintf "~a shift/reduce conflict~a\n"
|
|
|
|
SR-conflicts
|
|
|
|
(if (= SR-conflicts 1) "" "s")))
|
|
|
|
(when (> RR-conflicts 0)
|
|
|
|
(eprintf "~a reduce/reduce conflict~a\n"
|
|
|
|
RR-conflicts
|
|
|
|
(if (= RR-conflicts 1) "" "s"))))
|
|
|
|
table)
|
|
|
|
|
|
|
|
|
|
|
|
;; resolve-sr-conflict : (listof action) (union int #f) -> (listof action)
|
|
|
|
;; Resolves a single shift-reduce conflict, if precedences are in place.
|
|
|
|
(define (resolve-sr-conflict/prec actions shift-prec)
|
|
|
|
(define shift (if (shift? (car actions))
|
|
|
|
(car actions)
|
|
|
|
(cadr actions)))
|
|
|
|
(define reduce (if (shift? (car actions))
|
|
|
|
(cadr actions)
|
|
|
|
(car actions)))
|
|
|
|
(define reduce-prec (prod-prec (reduce-prod reduce)))
|
|
|
|
(cond
|
|
|
|
[(and shift-prec reduce-prec)
|
|
|
|
(cond
|
|
|
|
[(< (prec-num shift-prec) (prec-num reduce-prec))
|
|
|
|
(list reduce)]
|
|
|
|
[(> (prec-num shift-prec) (prec-num reduce-prec))
|
|
|
|
(list shift)]
|
|
|
|
[(eq? 'left (prec-assoc shift-prec))
|
|
|
|
(list reduce)]
|
|
|
|
[(eq? 'right (prec-assoc shift-prec))
|
|
|
|
(list shift)]
|
|
|
|
[else '()])]
|
|
|
|
[else actions]))
|
|
|
|
|
|
|
|
|
|
|
|
;; resolve-prec-conflicts : parse-table -> grouped-parse-table
|
|
|
|
(define (resolve-prec-conflicts table)
|
|
|
|
(table-map
|
|
|
|
(λ (gs actions)
|
|
|
|
(cond
|
|
|
|
[(and (term? gs)
|
|
|
|
(= 2 (length actions))
|
|
|
|
(or (shift? (car actions))
|
|
|
|
(shift? (cadr actions))))
|
|
|
|
(resolve-sr-conflict/prec actions (term-prec gs))]
|
|
|
|
[else actions]))
|
|
|
|
(group-table table)))
|
|
|
|
|
|
|
|
;; build-table: grammar string bool -> parse-table
|
|
|
|
(define (build-table g file suppress)
|
|
|
|
(define a (build-lr0-automaton g))
|
|
|
|
(define term-vector (list->vector (grammar-terms g)))
|
|
|
|
(define end-terms (grammar-end-terms g))
|
|
|
|
(define table (make-parse-table (send a get-num-states)))
|
|
|
|
(define get-lookahead (compute-LA a g))
|
|
|
|
(define reduce-cache (make-hash))
|
|
|
|
(for ([trans-key/state (in-list (send a get-transitions))])
|
|
|
|
(define from-state-index (kernel-index (trans-key-st (car trans-key/state))))
|
|
|
|
(define gs (trans-key-gs (car trans-key/state)))
|
|
|
|
(define to-state (cdr trans-key/state))
|
|
|
|
|
|
|
|
(table-add! table from-state-index gs
|
|
|
|
(cond
|
|
|
|
((non-term? gs)
|
|
|
|
(goto (kernel-index to-state)))
|
|
|
|
((member gs end-terms)
|
|
|
|
(accept))
|
|
|
|
(else
|
|
|
|
(shift
|
|
|
|
(kernel-index to-state))))))
|
|
|
|
(send a for-each-state
|
|
|
|
(λ (state)
|
|
|
|
(for ([item (in-list (append (hash-ref (send a get-epsilon-trans) state (λ () '()))
|
|
|
|
(filter (λ (item)
|
|
|
|
(not (move-dot-right item)))
|
|
|
|
(kernel-items state))))])
|
|
|
|
(let ([item-prod (item-prod item)])
|
|
|
|
(bit-vector-for-each
|
|
|
|
(λ (term-index)
|
|
|
|
(unless (start-item? item)
|
|
|
|
(define r (hash-ref! reduce-cache item-prod (λ () (reduce item-prod))))
|
|
|
|
(table-add! table
|
|
|
|
(kernel-index state)
|
|
|
|
(vector-ref term-vector term-index)
|
|
|
|
r)))
|
|
|
|
(get-lookahead state item-prod))))))
|
|
|
|
|
|
|
|
(define grouped-table (resolve-prec-conflicts table))
|
|
|
|
(unless (string=? file "")
|
|
|
|
(with-handlers [(exn:fail:filesystem?
|
|
|
|
(λ (e)
|
|
|
|
(eprintf
|
|
|
|
"Cannot write debug output to file \"~a\": ~a\n"
|
|
|
|
file
|
|
|
|
(exn-message e))))]
|
|
|
|
(call-with-output-file file
|
|
|
|
(λ (port)
|
|
|
|
(display-parser a grouped-table (grammar-all-prods g) port))
|
|
|
|
#:exists 'truncate)))
|
|
|
|
(resolve-conflicts grouped-table suppress))
|