You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
brag/parser-tools/private-yacc/lr0.rkt

312 lines
12 KiB
Racket

#lang racket/base
(require yaragg/parser-tools/private-yacc/grammar
yaragg/parser-tools/private-yacc/graph
racket/class)
;; Handle the LR0 automaton
(provide build-lr0-automaton lr0%
(struct-out trans-key) trans-key-list-remove-dups
kernel-items kernel-index)
;; kernel = (kernel (LR1-item list) index)
;; the list must be kept sorted according to item<? so that equal? can
;; be used to compare kernels
;; Each kernel is assigned a unique index, 0 <= index < number of states
;; trans-key = (trans-key kernel gram-sym)
(struct kernel (items index) #:transparent)
(struct trans-key (st gs) #:transparent)
(define (trans-key<? a b)
(define kia (kernel-index (trans-key-st a)))
(define kib (kernel-index (trans-key-st b)))
(or (< kia kib)
(and (= kia kib)
(< (non-term-index (trans-key-gs a))
(non-term-index (trans-key-gs b))))))
(define (trans-key-list-remove-dups tkl)
(let loop ([sorted (sort tkl trans-key<?)])
(cond
[(null? sorted) '()]
[(null? (cdr sorted)) sorted]
[(and (= (non-term-index (trans-key-gs (car sorted)))
(non-term-index (trans-key-gs (cadr sorted))))
(= (kernel-index (trans-key-st (car sorted)))
(kernel-index (trans-key-st (cadr sorted)))))
(loop (cdr sorted))]
[else
(cons (car sorted) (loop (cdr sorted)))])))
;; build-transition-table : int (listof (cons/c trans-key X) ->
;; (vectorof (symbol X hashtable))
(define (build-transition-table num-states assoc)
(define transitions (make-vector num-states #f))
(let loop ([i (sub1 (vector-length transitions))])
(when (>= i 0)
(vector-set! transitions i (make-hasheq))
(loop (sub1 i))))
(for ([trans-key/kernel (in-list assoc)])
(define tk (car trans-key/kernel))
(hash-set! (vector-ref transitions (kernel-index (trans-key-st tk)))
(gram-sym-symbol (trans-key-gs tk))
(cdr trans-key/kernel)))
transitions)
;; reverse-assoc : (listof (cons/c trans-key? kernel?)) ->
;; (listof (cons/c trans-key? (listof kernel?)))
(define (reverse-assoc assoc)
(define reverse-hash (make-hash))
(define (hash-table-add! ht k v)
(hash-set! ht k (cons v (hash-ref ht k '()))))
(for ([trans-key/kernel (in-list assoc)])
(define tk (car trans-key/kernel))
(hash-table-add! reverse-hash
(trans-key (cdr trans-key/kernel)
(trans-key-gs tk))
(trans-key-st tk)))
(hash-map reverse-hash cons))
;; kernel-list-remove-duplicates
;; LR0-automaton = object of class lr0%
(define lr0%
(class object%
(super-instantiate ())
;; term-assoc : (listof (cons/c trans-key? kernel?))
;; non-term-assoc : (listof (cons/c trans-key? kernel?))
;; states : (vectorof kernel?)
;; epsilons : ???
(init-field term-assoc non-term-assoc states epsilons)
(define transitions (build-transition-table (vector-length states)
(append term-assoc non-term-assoc)))
(define reverse-term-assoc (reverse-assoc term-assoc))
(define reverse-non-term-assoc (reverse-assoc non-term-assoc))
(define reverse-transitions
(build-transition-table (vector-length states)
(append reverse-term-assoc reverse-non-term-assoc)))
(define mapped-non-terms (map car non-term-assoc))
(define/public (get-mapped-non-term-keys)
mapped-non-terms)
(define/public (get-num-states)
(vector-length states))
(define/public (get-epsilon-trans)
epsilons)
(define/public (get-transitions)
(append term-assoc non-term-assoc))
;; for-each-state : (state ->) ->
;; Iteration over the states in an automaton
(define/public (for-each-state f)
(define num-states (vector-length states))
(let loop ([i 0])
(when (< i num-states)
(f (vector-ref states i))
(loop (add1 i)))))
;; run-automaton: kernel? gram-sym? -> (union kernel #f)
;; returns the state reached from state k on input s, or #f when k
;; has no transition on s
(define/public (run-automaton k s)
(hash-ref (vector-ref transitions (kernel-index k))
(gram-sym-symbol s)
#f))
;; run-automaton-back : (listof kernel?) gram-sym? -> (listof kernel)
;; returns the list of states that can reach k by transitioning on s.
(define/public (run-automaton-back k s)
(for*/list ([k (in-list k)]
[val (in-list (hash-ref (vector-ref reverse-transitions (kernel-index k))
(gram-sym-symbol s)
'()))])
val))))
(define ((union comp<?) l1 l2)
(let loop ([l1 l1] [l2 l2])
(cond
[(null? l1) l2]
[(null? l2) l1]
[else (define c1 (car l1))
(define c2 (car l2))
(cond
[(comp<? c1 c2) (cons c1 (loop (cdr l1) l2))]
[(comp<? c2 c1) (cons c2 (loop l1 (cdr l2)))]
[else (loop (cdr l1) l2)])])))
;; The kernels in the automaton are represented cannonically.
;; That is (equal? a b) <=> (eq? a b)
(define (kernel->string k)
(apply string-append
`("{" ,@(map (λ (i) (string-append (item->string i) ", "))
(kernel-items k))
"}")))
;; build-LR0-automaton: grammar -> LR0-automaton
;; Constructs the kernels of the sets of LR(0) items of g
(define (build-lr0-automaton grammar)
; (printf "LR(0) automaton:\n")
(define epsilons (make-hash))
(define grammar-symbols (append (grammar-non-terms grammar)
(grammar-terms grammar)))
;; first-non-term: non-term -> non-term list
;; given a non-terminal symbol C, return those non-terminal
;; symbols A s.t. C -> An for some string of terminals and
;; non-terminals n where -> means a rightmost derivation in many
;; steps. Assumes that each non-term can be reduced to a string
;; of terms.
(define first-non-term
(digraph (grammar-non-terms grammar)
(λ (nt)
(filter non-term?
(map (λ (prod) (sym-at-dot (item prod 0)))
(grammar-prods-for-non-term grammar nt))))
(λ (nt) (list nt))
(union non-term<?)
(λ () '())))
;; closure: LR1-item list -> LR1-item list
;; Creates a set of items containing i s.t. if A -> n.Xm is in it,
;; X -> .o is in it too.
(define (LR0-closure i)
(cond
[(null? i) '()]
[else
(define next-gsym (sym-at-dot (car i)))
(cond
[(non-term? next-gsym)
(cons (car i)
(append
(for*/list ([non-term (in-list (first-non-term next-gsym))]
[x (in-list (grammar-prods-for-non-term grammar non-term))])
(item x 0))
(LR0-closure (cdr i))))]
[else (cons (car i) (LR0-closure (cdr i)))])]))
;; maps trans-keys to kernels
(define automaton-term '())
(define automaton-non-term '())
;; keeps the kernels we have seen, so we can have a unique
;; list for each kernel
(define kernels (make-hash))
(define counter 0)
;; goto: LR1-item list -> LR1-item list list
;; creates new kernels by moving the dot in each item in the
;; LR0-closure of kernel to the right, and grouping them by
;; the term/non-term moved over. Returns the kernels not
;; yet seen, and places the trans-keys into automaton
(define (goto ker)
;; maps a gram-syms to a list of items
(define table (make-hasheq))
;; add-item!:
;; (symbol (listof item) hashtable) item? ->
;; adds i into the table grouped with the grammar
;; symbol following its dot
(define (add-item! table i)
(define gs (sym-at-dot i))
(cond
[gs (define already (hash-ref table (gram-sym-symbol gs) '()))
(unless (member i already)
(hash-set! table (gram-sym-symbol gs) (cons i already)))]
((zero? (vector-length (prod-rhs (item-prod i))))
(define current (hash-ref epsilons ker '()))
(hash-set! epsilons ker (cons i current)))))
;; Group the items of the LR0 closure of the kernel
;; by the character after the dot
(for ([item (in-list (LR0-closure (kernel-items ker)))])
(add-item! table item))
;; each group is a new kernel, with the dot advanced.
;; sorts the items in a kernel so kernels can be compared
;; with equal? for using the table kernels to make sure
;; only one representitive of each kernel is created
(define is
(let loop ([gsyms grammar-symbols])
(cond
[(null? gsyms) '()]
[else
(define items (hash-ref table (gram-sym-symbol (car gsyms)) '()))
(cond
[(null? items) (loop (cdr gsyms))]
[else (cons (list (car gsyms) items)
(loop (cdr gsyms)))])])))
(filter
values
(for/list ([i (in-list is)])
(define gs (car i))
(define items (cadr i))
(define new #f)
(define new-kernel (sort (filter values (map move-dot-right items)) item<?))
(define unique-kernel (hash-ref kernels new-kernel
(λ ()
(define k (kernel new-kernel counter))
(set! new #t)
(set! counter (add1 counter))
(hash-set! kernels new-kernel k)
k)))
(if (term? gs)
(set! automaton-term (cons (cons (trans-key ker gs)
unique-kernel)
automaton-term))
(set! automaton-non-term (cons (cons (trans-key ker gs)
unique-kernel)
automaton-non-term)))
#;(printf "~a -> ~a on ~a\n"
(kernel->string kernel)
(kernel->string unique-kernel)
(gram-sym-symbol gs))
(and new unique-kernel))))
(define starts (map (λ (init-prod) (list (item init-prod 0)))
(grammar-init-prods grammar)))
(define startk (for/list ([start (in-list starts)])
(define k (kernel start counter))
(hash-set! kernels start k)
(set! counter (add1 counter))
k))
(define new-kernels (make-queue))
(let loop ([old-kernels startk]
[seen-kernels '()])
(cond
[(and (empty-queue? new-kernels) (null? old-kernels))
(make-object lr0% automaton-term automaton-non-term
(list->vector (reverse seen-kernels)) epsilons)]
[(null? old-kernels) (loop (deq! new-kernels) seen-kernels)]
[else
(enq! new-kernels (goto (car old-kernels)))
(loop (cdr old-kernels) (cons (car old-kernels) seen-kernels))])))
(struct q (f l) #:mutable)
(define (empty-queue? q) (null? (q-f q)))
(define (make-queue) (q '() '()))
(define (enq! q i)
(cond
[(empty-queue? q)
(let ([i (mcons i '())])
(set-q-l! q i)
(set-q-f! q i))]
[else
(set-mcdr! (q-l q) (mcons i '()))
(set-q-l! q (mcdr (q-l q)))]))
(define (deq! q)
(begin0
(mcar (q-f q))
(set-q-f! q (mcdr (q-f q)))))