You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
br-parser-tools/pkgs/parser-tools-pkgs/parser-tools-lib/parser-tools/cfg-parser.rkt

983 lines
54 KiB
Racket

#lang racket/base
;; This module implements a parser form like the parser-tools's
;; `parser', except that it works on an arbitrary CFG (returning
;; the first sucecssful parse).
;; I'm pretty sure that this is an implementation of Earley's
;; algorithm.
;; To a first approximation, it's a backtracking parser. Alternative
;; for a non-terminal are computed in parallel, and multiple attempts
;; to compute the same result block until the first one completes. If
;; you get into deadlock, such as when trying to match
;; <foo> := <foo>
;; then it means that there's no successful parse, so everything
;; that's blocked fails.
;; A cache holds the series of results for a particular non-terminal
;; at a particular starting location. (A series is used, instead of a
;; sinlge result, for backtracking.) Otherwise, the parser uses
;; backtracking search. Backtracking is implemented through explicit
;; success and failure continuations. Multiple results for a
;; particular nonterminal and location are kept only when they have
;; different lengths. (Otherwise, in the spirit of finding one
;; successful parse, only the first result is kept.)
;; The parser-tools's `parse' is used to transform tokens in the
;; grammar to tokens specific to this parser. In other words, this
;; parser uses `parser' so that it doesn't have to know anything about
;; tokens.
;;
(require parser-tools/yacc
parser-tools/lex)
(require (for-syntax racket/base
syntax/boundmap
parser-tools/private-lex/token-syntax))
(provide cfg-parser)
;; A raw token, wrapped so that we can recognize it:
(define-struct tok (name orig-name val start end))
;; Represents the thread scheduler:
(define-struct tasks (active active-back waits multi-waits cache progress?))
(define-for-syntax make-token-identifier-mapping make-hasheq)
(define-for-syntax token-identifier-mapping-get
(case-lambda
[(t tok)
(hash-ref t (syntax-e tok))]
[(t tok fail)
(hash-ref t (syntax-e tok) fail)]))
(define-for-syntax token-identifier-mapping-put!
(lambda (t tok v)
(hash-set! t (syntax-e tok) v)))
(define-for-syntax token-identifier-mapping-map
(lambda (t f)
(hash-map t f)))
;; Used to calculate information on the grammar, such as whether
;; a particular non-terminal is "simple" instead of recursively defined.
(define-for-syntax (nt-fixpoint nts proc nt-ids patss)
(define (ormap-all val f as bs)
(cond
[(null? as) val]
[else (ormap-all (or (f (car as) (car bs)) val)
f
(cdr as) (cdr bs))]))
(let loop ()
(when (ormap-all #f
(lambda (nt pats)
(let ([old (bound-identifier-mapping-get nts nt)])
(let ([new (proc nt pats old)])
(if (equal? old new)
#f
(begin
(bound-identifier-mapping-put! nts nt new)
#t)))))
nt-ids patss)
(loop))))
;; Tries parse-a followed by parse-b. If parse-a is not simple,
;; then after parse-a succeeds once, we parallelize parse-b
;; and trying a second result for parse-a.
(define (parse-and simple-a? parse-a parse-b
stream last-consumed-token depth end success-k fail-k
max-depth tasks)
(letrec ([mk-got-k
(lambda (success-k fail-k)
(lambda (val stream last-consumed-token depth max-depth tasks next1-k)
(if simple-a?
(parse-b val stream last-consumed-token depth end
(mk-got2-k success-k fail-k next1-k)
(mk-fail2-k success-k fail-k next1-k)
max-depth tasks)
(parallel-or
(lambda (success-k fail-k max-depth tasks)
(parse-b val stream last-consumed-token depth end
success-k fail-k
max-depth tasks))
(lambda (success-k fail-k max-depth tasks)
(next1-k (mk-got-k success-k fail-k)
fail-k max-depth tasks))
success-k fail-k max-depth tasks))))]
[mk-got2-k
(lambda (success-k fail-k next1-k)
(lambda (val stream last-consumed-token depth max-depth tasks next-k)
(success-k val stream last-consumed-token depth max-depth tasks
(lambda (success-k fail-k max-depth tasks)
(next-k (mk-got2-k success-k fail-k next1-k)
(mk-fail2-k success-k fail-k next1-k)
max-depth tasks)))))]
[mk-fail2-k
(lambda (success-k fail-k next1-k)
(lambda (max-depth tasks)
(next1-k (mk-got-k success-k fail-k)
fail-k
max-depth
tasks)))])
(parse-a stream last-consumed-token depth end
(mk-got-k success-k fail-k)
fail-k
max-depth tasks)))
;; Parallel or for non-terminal alternatives
(define (parse-parallel-or parse-a parse-b stream last-consumed-token depth end success-k fail-k max-depth tasks)
(parallel-or (lambda (success-k fail-k max-depth tasks)
(parse-a stream last-consumed-token depth end success-k fail-k max-depth tasks))
(lambda (success-k fail-k max-depth tasks)
(parse-b stream last-consumed-token depth end success-k fail-k max-depth tasks))
success-k fail-k max-depth tasks))
;; Generic parallel-or
(define (parallel-or parse-a parse-b success-k fail-k max-depth tasks)
(define answer-key (gensym))
(letrec ([gota-k
(lambda (val stream last-consumed-token depth max-depth tasks next-k)
(report-answer answer-key
max-depth
tasks
(list val stream last-consumed-token depth next-k)))]
[faila-k
(lambda (max-depth tasks)
(report-answer answer-key
max-depth
tasks
null))])
(let* ([tasks (queue-task
tasks
(lambda (max-depth tasks)
(parse-a gota-k
faila-k
max-depth tasks)))]
[tasks (queue-task
tasks
(lambda (max-depth tasks)
(parse-b gota-k
faila-k
max-depth tasks)))]
[queue-next (lambda (next-k tasks)
(queue-task tasks
(lambda (max-depth tasks)
(next-k gota-k
faila-k
max-depth tasks))))])
(letrec ([mk-got-one
(lambda (immediate-next? get-nth success-k)
(lambda (val stream last-consumed-token depth max-depth tasks next-k)
(let ([tasks (if immediate-next?
(queue-next next-k tasks)
tasks)])
(success-k val stream last-consumed-token depth max-depth
tasks
(lambda (success-k fail-k max-depth tasks)
(let ([tasks (if immediate-next?
tasks
(queue-next next-k tasks))])
(get-nth max-depth tasks success-k fail-k)))))))]
[get-first
(lambda (max-depth tasks success-k fail-k)
(wait-for-answer #f max-depth tasks answer-key
(mk-got-one #t get-first success-k)
(lambda (max-depth tasks)
(get-second max-depth tasks success-k fail-k))
#f))]
[get-second
(lambda (max-depth tasks success-k fail-k)
(wait-for-answer #f max-depth tasks answer-key
(mk-got-one #f get-second success-k)
fail-k #f))])
(get-first max-depth tasks success-k fail-k)))))
;; Non-terminal alternatives where the first is "simple" can be done
;; sequentially, which is simpler
(define (parse-or parse-a parse-b
stream last-consumed-token depth end success-k fail-k max-depth tasks)
(letrec ([mk-got-k
(lambda (success-k fail-k)
(lambda (val stream last-consumed-token depth max-depth tasks next-k)
(success-k val stream last-consumed-token depth
max-depth tasks
(lambda (success-k fail-k max-depth tasks)
(next-k (mk-got-k success-k fail-k)
(mk-fail-k success-k fail-k)
max-depth tasks)))))]
[mk-fail-k
(lambda (success-k fail-k)
(lambda (max-depth tasks)
(parse-b stream last-consumed-token depth end success-k fail-k max-depth tasks)))])
(parse-a stream last-consumed-token depth end
(mk-got-k success-k fail-k)
(mk-fail-k success-k fail-k)
max-depth tasks)))
;; Starts a thread
(define queue-task
(lambda (tasks t [progress? #t])
(make-tasks (tasks-active tasks)
(cons t (tasks-active-back tasks))
(tasks-waits tasks)
(tasks-multi-waits tasks)
(tasks-cache tasks)
(or progress? (tasks-progress? tasks)))))
;; Reports an answer to a waiting thread:
(define (report-answer answer-key max-depth tasks val)
(let ([v (hash-ref (tasks-waits tasks) answer-key (lambda () #f))])
(if v
(let ([tasks (make-tasks (cons (v val)
(tasks-active tasks))
(tasks-active-back tasks)
(tasks-waits tasks)
(tasks-multi-waits tasks)
(tasks-cache tasks)
#t)])
(hash-remove! (tasks-waits tasks) answer-key)
(swap-task max-depth tasks))
;; We have an answer ready too fast; wait
(swap-task max-depth
(queue-task tasks
(lambda (max-depth tasks)
(report-answer answer-key max-depth tasks val))
#f)))))
;; Reports an answer to multiple waiting threads:
(define (report-answer-all answer-key max-depth tasks val k)
(let ([v (hash-ref (tasks-multi-waits tasks) answer-key (lambda () null))])
(hash-remove! (tasks-multi-waits tasks) answer-key)
(let ([tasks (make-tasks (append (map (lambda (a) (a val)) v)
(tasks-active tasks))
(tasks-active-back tasks)
(tasks-waits tasks)
(tasks-multi-waits tasks)
(tasks-cache tasks)
#t)])
(k max-depth tasks))))
;; Waits for an answer; if `multi?' is #f, this is sole waiter, otherwise
;; there might be many. Use wither #t or #f (and `report-answer' or
;; `report-answer-all', resptively) consistently for a particular answer key.
(define (wait-for-answer multi? max-depth tasks answer-key success-k fail-k deadlock-k)
(let ([wait (lambda (val)
(lambda (max-depth tasks)
(if val
(if (null? val)
(fail-k max-depth tasks)
(let-values ([(val stream last-consumed-token depth next-k) (apply values val)])
(success-k val stream last-consumed-token depth max-depth tasks next-k)))
(deadlock-k max-depth tasks))))])
(if multi?
(hash-set! (tasks-multi-waits tasks) answer-key
(cons wait (hash-ref (tasks-multi-waits tasks) answer-key
(lambda () null))))
(hash-set! (tasks-waits tasks) answer-key wait))
(let ([tasks (make-tasks (tasks-active tasks)
(tasks-active-back tasks)
(tasks-waits tasks)
(tasks-multi-waits tasks)
(tasks-cache tasks)
#t)])
(swap-task max-depth tasks))))
;; Swap thread
(define (swap-task max-depth tasks)
;; Swap in first active:
(if (null? (tasks-active tasks))
(if (tasks-progress? tasks)
(swap-task max-depth
(make-tasks (reverse (tasks-active-back tasks))
null
(tasks-waits tasks)
(tasks-multi-waits tasks)
(tasks-cache tasks)
#f))
;; No progress, so issue failure for all multi-waits
(if (zero? (hash-count (tasks-multi-waits tasks)))
(error 'swap-task "Deadlock")
(swap-task max-depth
(make-tasks (apply
append
(hash-map (tasks-multi-waits tasks)
(lambda (k l)
(map (lambda (v) (v #f)) l))))
(tasks-active-back tasks)
(tasks-waits tasks)
(make-hasheq)
(tasks-cache tasks)
#t))))
(let ([t (car (tasks-active tasks))]
[tasks (make-tasks (cdr (tasks-active tasks))
(tasks-active-back tasks)
(tasks-waits tasks)
(tasks-multi-waits tasks)
(tasks-cache tasks)
(tasks-progress? tasks))])
(t max-depth tasks))))
;; Finds the symbolic representative of a token class
(define-for-syntax (map-token toks tok)
(car (token-identifier-mapping-get toks tok)))
(define no-pos-val (make-position #f #f #f))
(define-for-syntax no-pos
(let ([npv ((syntax-local-certifier) #'no-pos-val)])
(lambda (stx) npv)))
(define-for-syntax at-tok-pos
(lambda (sel expr)
(lambda (stx)
#`(let ([v #,expr]) (if v (#,sel v) no-pos-val)))))
;; Builds a matcher for a particular alternative
(define-for-syntax (build-match nts toks pat handle $ctx)
(let loop ([pat pat]
[pos 1])
(if (null? pat)
#`(success-k #,handle stream last-consumed-token depth max-depth tasks
(lambda (success-k fail-k max-depth tasks)
(fail-k max-depth tasks)))
(let ([id (datum->syntax (car pat)
(string->symbol (format "$~a" pos)))]
[id-start-pos (datum->syntax (car pat)
(string->symbol (format "$~a-start-pos" pos)))]
[id-end-pos (datum->syntax (car pat)
(string->symbol (format "$~a-end-pos" pos)))]
[n-end-pos (and (null? (cdr pat))
(datum->syntax (car pat) '$n-end-pos))])
(cond
[(bound-identifier-mapping-get nts (car pat) (lambda () #f))
;; Match non-termimal
#`(parse-and
;; First part is simple? (If so, we don't have to parallelize the `and'.)
#,(let ([l (bound-identifier-mapping-get nts (car pat) (lambda () #f))])
(or (not l)
(andmap values (caddr l))))
#,(car pat)
(let ([original-stream stream])
(lambda (#,id stream last-consumed-token depth end success-k fail-k max-depth tasks)
(let-syntax ([#,id-start-pos (at-tok-pos #'(if (eq? original-stream stream)
tok-end
tok-start)
#'(if (eq? original-stream stream)
last-consumed-token
(and (pair? original-stream)
(car original-stream))))]
[#,id-end-pos (at-tok-pos #'tok-end #'last-consumed-token)]
#,@(if n-end-pos
#`([#,n-end-pos (at-tok-pos #'tok-end #'last-consumed-token)])
null))
#,(loop (cdr pat) (add1 pos)))))
stream last-consumed-token depth
#,(let ([cnt (apply +
(map (lambda (item)
(cond
[(bound-identifier-mapping-get nts item (lambda () #f))
=> (lambda (l) (car l))]
[else 1]))
(cdr pat)))])
#`(- end #,cnt))
success-k fail-k max-depth tasks)]
[else
;; Match token
(let ([tok-id (map-token toks (car pat))])
#`(if (and (pair? stream)
(eq? '#,tok-id (tok-name (car stream))))
(let* ([stream-a (car stream)]
[#,id (tok-val stream-a)]
[last-consumed-token (car stream)]
[stream (cdr stream)]
[depth (add1 depth)])
(let ([max-depth (max max-depth depth)])
(let-syntax ([#,id-start-pos (at-tok-pos #'tok-start #'stream-a)]
[#,id-end-pos (at-tok-pos #'tok-end #'stream-a)]
#,@(if n-end-pos
#`([#,n-end-pos (at-tok-pos #'tok-end #'stream-a)])
null))
#,(loop (cdr pat) (add1 pos)))))
(fail-k max-depth tasks)))])))))
;; Starts parsing to match a non-terminal. There's a minor
;; optimization that checks for known starting tokens. Otherwise,
;; use the cache, block if someone else is already trying the match,
;; and cache the result if it's computed.
;; The cache maps nontermial+startingpos+iteration to a result, where
;; the iteration is 0 for the first match attempt, 1 for the second,
;; etc.
(define (parse-nt/share key min-cnt init-tokens stream last-consumed-token depth end max-depth tasks success-k fail-k k)
(if (and (positive? min-cnt)
(pair? stream)
(not (memq (tok-name (car stream)) init-tokens)))
;; No such leading token; give up
(fail-k max-depth tasks)
;; Run pattern
(let loop ([n 0]
[success-k success-k]
[fail-k fail-k]
[max-depth max-depth]
[tasks tasks]
[k k])
(let ([answer-key (gensym)]
[table-key (vector key depth n)]
[old-depth depth]
[old-stream stream])
#;(printf "Loop ~a\n" table-key)
(cond
[(hash-ref (tasks-cache tasks) table-key (lambda () #f))
=> (lambda (result)
#;(printf "Reuse ~a\n" table-key)
(result success-k fail-k max-depth tasks))]
[else
#;(printf "Try ~a ~a\n" table-key (map tok-name stream))
(hash-set! (tasks-cache tasks) table-key
(lambda (success-k fail-k max-depth tasks)
#;(printf "Wait ~a ~a\n" table-key answer-key)
(wait-for-answer #t max-depth tasks answer-key success-k fail-k
(lambda (max-depth tasks)
#;(printf "Deadlock ~a ~a\n" table-key answer-key)
(fail-k max-depth tasks)))))
(let result-loop ([max-depth max-depth][tasks tasks][k k])
(letrec ([orig-stream stream]
[new-got-k
(lambda (val stream last-consumed-token depth max-depth tasks next-k)
;; Check whether we already have a result that consumed the same amount:
(let ([result-key (vector #f key old-depth depth)])
(cond
[(hash-ref (tasks-cache tasks) result-key (lambda () #f))
;; Go for the next-result
(result-loop max-depth
tasks
(lambda (end max-depth tasks success-k fail-k)
(next-k success-k fail-k max-depth tasks)))]
[else
#;(printf "Success ~a ~a\n" table-key
(map tok-name (let loop ([d old-depth][s old-stream])
(if (= d depth)
null
(cons (car s) (loop (add1 d) (cdr s)))))))
(let ([next-k (lambda (success-k fail-k max-depth tasks)
(loop (add1 n)
success-k
fail-k
max-depth
tasks
(lambda (end max-depth tasks success-k fail-k)
(next-k success-k fail-k max-depth tasks))))])
(hash-set! (tasks-cache tasks) result-key #t)
(hash-set! (tasks-cache tasks) table-key
(lambda (success-k fail-k max-depth tasks)
(success-k val stream last-consumed-token depth max-depth tasks next-k)))
(report-answer-all answer-key
max-depth
tasks
(list val stream last-consumed-token depth next-k)
(lambda (max-depth tasks)
(success-k val stream last-consumed-token depth max-depth tasks next-k))))])))]
[new-fail-k
(lambda (max-depth tasks)
#;(printf "Failure ~a\n" table-key)
(hash-set! (tasks-cache tasks) table-key
(lambda (success-k fail-k max-depth tasks)
(fail-k max-depth tasks)))
(report-answer-all answer-key
max-depth
tasks
null
(lambda (max-depth tasks)
(fail-k max-depth tasks))))])
(k end max-depth tasks new-got-k new-fail-k)))])))))
(define-syntax (cfg-parser stx)
(syntax-case stx ()
[(_ clause ...)
(let ([clauses (syntax->list #'(clause ...))])
(let-values ([(start grammar cfg-error parser-clauses src-pos?)
(let ([all-toks (apply
append
(map (lambda (clause)
(syntax-case clause (tokens)
[(tokens t ...)
(apply
append
(map (lambda (t)
(let ([v (syntax-local-value t (lambda () #f))])
(cond
[(terminals-def? v)
(map (lambda (v)
(cons v #f))
(syntax->list (terminals-def-t v)))]
[(e-terminals-def? v)
(map (lambda (v)
(cons v #t))
(syntax->list (e-terminals-def-t v)))]
[else null])))
(syntax->list #'(t ...))))]
[_else null]))
clauses))]
[all-end-toks (apply
append
(map (lambda (clause)
(syntax-case clause (end)
[(end t ...)
(syntax->list #'(t ...))]
[_else null]))
clauses))])
(let loop ([clauses clauses]
[cfg-start #f]
[cfg-grammar #f]
[cfg-error #f]
[src-pos? #f]
[parser-clauses null])
(if (null? clauses)
(values cfg-start
cfg-grammar
cfg-error
(reverse parser-clauses)
src-pos?)
(syntax-case (car clauses) (start error grammar src-pos)
[(start tok)
(loop (cdr clauses) #'tok cfg-grammar cfg-error src-pos? parser-clauses)]
[(error expr)
(loop (cdr clauses) cfg-start cfg-grammar #'expr src-pos? parser-clauses)]
[(grammar [nt [pat handle0 handle ...] ...] ...)
(let ([nts (make-bound-identifier-mapping)]
[toks (make-token-identifier-mapping)]
[end-toks (make-token-identifier-mapping)]
[nt-ids (syntax->list #'(nt ...))]
[patss (map (lambda (stx)
(map syntax->list (syntax->list stx)))
(syntax->list #'((pat ...) ...)))])
(for-each (lambda (nt)
(bound-identifier-mapping-put! nts nt (list 0)))
nt-ids)
(for-each (lambda (t)
(token-identifier-mapping-put! end-toks t #t))
all-end-toks)
(for-each (lambda (t)
(unless (token-identifier-mapping-get end-toks (car t) (lambda () #f))
(let ([id (gensym (syntax-e (car t)))])
(token-identifier-mapping-put! toks (car t)
(cons id (cdr t))))))
all-toks)
;; Compute min max size for each non-term:
(nt-fixpoint
nts
(lambda (nt pats old-list)
(let ([new-cnt
(apply
min
(map (lambda (pat)
(apply
+
(map (lambda (elem)
(car
(bound-identifier-mapping-get nts
elem
(lambda () (list 1)))))
pat)))
pats))])
(if (new-cnt . > . (car old-list))
(cons new-cnt (cdr old-list))
old-list)))
nt-ids patss)
;; Compute set of toks that must appear at the beginning
;; for a non-terminal
(nt-fixpoint
nts
(lambda (nt pats old-list)
(let ([new-list
(apply
append
(map (lambda (pat)
(let loop ([pat pat])
(if (pair? pat)
(let ([l (bound-identifier-mapping-get
nts
(car pat)
(lambda ()
(list 1 (map-token toks (car pat)))))])
;; If the non-terminal can match 0 things,
;; then it might match something from the
;; next pattern element. Otherwise, it must
;; match the first element:
(if (zero? (car l))
(append (cdr l) (loop (cdr pat)))
(cdr l)))
null)))
pats))])
(let ([new (filter (lambda (id)
(andmap (lambda (id2)
(not (eq? id id2)))
(cdr old-list)))
new-list)])
(if (pair? new)
;; Drop dups in new list:
(let ([new (let loop ([new new])
(if (null? (cdr new))
new
(if (ormap (lambda (id)
(eq? (car new) id))
(cdr new))
(loop (cdr new))
(cons (car new) (loop (cdr new))))))])
(cons (car old-list) (append new (cdr old-list))))
old-list))))
nt-ids patss)
;; Determine left-recursive clauses:
(for-each (lambda (nt pats)
(let ([l (bound-identifier-mapping-get nts nt)])
(bound-identifier-mapping-put! nts nt (list (car l)
(cdr l)
(map (lambda (x) #f) pats)))))
nt-ids patss)
(nt-fixpoint
nts
(lambda (nt pats old-list)
(list (car old-list)
(cadr old-list)
(map (lambda (pat simple?)
(or simple?
(let ([l (map (lambda (elem)
(bound-identifier-mapping-get
nts
elem
(lambda () #f)))
pat)])
(andmap (lambda (i)
(or (not i)
(andmap values (caddr i))))
l))))
pats (caddr old-list))))
nt-ids patss)
;; Build a definition for each non-term:
(loop (cdr clauses)
cfg-start
(map (lambda (nt pats handles $ctxs)
(define info (bound-identifier-mapping-get nts nt))
(list nt
#`(let ([key (gensym '#,nt)])
(lambda (stream last-consumed-token depth end success-k fail-k max-depth tasks)
(parse-nt/share
key #,(car info) '#,(cadr info) stream last-consumed-token depth end
max-depth tasks
success-k fail-k
(lambda (end max-depth tasks success-k fail-k)
#,(let loop ([pats pats]
[handles (syntax->list handles)]
[$ctxs (syntax->list $ctxs)]
[simple?s (caddr info)])
(if (null? pats)
#'(fail-k max-depth tasks)
#`(#,(if (or (null? (cdr pats))
(car simple?s))
#'parse-or
#'parse-parallel-or)
(lambda (stream last-consumed-token depth end success-k fail-k max-depth tasks)
#,(build-match nts
toks
(car pats)
(car handles)
(car $ctxs)))
(lambda (stream last-consumed-token depth end success-k fail-k max-depth tasks)
#,(loop (cdr pats)
(cdr handles)
(cdr $ctxs)
(cdr simple?s)))
stream last-consumed-token depth end success-k fail-k max-depth tasks)))))))))
nt-ids
patss
(syntax->list #'(((begin handle0 handle ...) ...) ...))
(syntax->list #'((handle0 ...) ...)))
cfg-error
src-pos?
(list*
(with-syntax ([((tok tok-id . $e) ...)
(token-identifier-mapping-map toks
(lambda (k v)
(list* k
(car v)
(if (cdr v)
#f
'$1))))]
[(pos ...)
(if src-pos?
#'($1-start-pos $1-end-pos)
#'(#f #f))])
#`(grammar (start [() null]
[(atok start) (cons $1 $2)])
(atok [(tok) (make-tok 'tok-id 'tok $e pos ...)] ...)))
#`(start start)
parser-clauses)))]
[(grammar . _)
(raise-syntax-error
#f
"bad grammar clause"
stx
(car clauses))]
[(src-pos)
(loop (cdr clauses)
cfg-start
cfg-grammar
cfg-error
#t
(cons (car clauses) parser-clauses))]
[_else
(loop (cdr clauses)
cfg-start
cfg-grammar
cfg-error
src-pos?
(cons (car clauses) parser-clauses))]))))])
#`(let ([orig-parse (parser
[error (lambda (a b c)
(error 'cfg-parser "unexpected ~a token: ~a" b c))]
. #,parser-clauses)]
[error-proc #,cfg-error])
(letrec #,grammar
(lambda (get-tok)
(let ([tok-list (orig-parse get-tok)])
(letrec ([success-k
(lambda (val stream last-consumed-token depth max-depth tasks next)
(if (null? stream)
val
(next success-k fail-k max-depth tasks)))]
[fail-k (lambda (max-depth tasks)
(define (call-error-proc tok-ok? tok-name tok-value start-pos end-pos)
(cond
[(procedure-arity-includes? error-proc 5)
(error-proc tok-ok? tok-name tok-value start-pos end-pos)]
[else
(error-proc tok-ok? tok-name tok-value)]))
(cond
[(null? tok-list)
(if error-proc
(call-error-proc #t
'no-tokens
#f
(make-position #f #f #f)
(make-position #f #f #f))
(error
'cfg-parse
"no tokens"))]
[else
(let ([bad-tok (list-ref tok-list
(min (sub1 (length tok-list))
max-depth))])
(if error-proc
(call-error-proc #t
(tok-orig-name bad-tok)
(tok-val bad-tok)
(tok-start bad-tok)
(tok-end bad-tok))
(error
'cfg-parse
"failed at ~a"
(tok-val bad-tok))))]))])
(#,start tok-list
;; we simulate a token at the very beginning with zero width
;; for use with the position-generating code (*-start-pos, *-end-pos).
(if (null? tok-list)
(tok #f #f #f
(position 1
#,(if src-pos? #'1 #'#f)
#,(if src-pos? #'0 #'#f))
(position 1
#,(if src-pos? #'1 #'#f)
#,(if src-pos? #'0 #'#f)))
(tok (tok-name (car tok-list))
(tok-orig-name (car tok-list))
(tok-val (car tok-list))
(tok-start (car tok-list))
(tok-start (car tok-list))))
0
(length tok-list)
success-k
fail-k
0
(make-tasks null null
(make-hasheq) (make-hasheq)
(make-hash) #t)))))))))]))
(module* test racket/base
(require (submod "..")
parser-tools/lex
racket/block
racket/generator
rackunit)
;; Test: parsing regular expressions.
;; Here is a test case on locations:
(block
(define-tokens regexp-tokens (ANCHOR STAR OR LIT LPAREN RPAREN EOF))
(define lex (lexer-src-pos ["|" (token-OR lexeme)]
["^" (token-ANCHOR lexeme)]
["*" (token-STAR lexeme)]
[(repetition 1 +inf.0 alphabetic) (token-LIT lexeme)]
["(" (token-LPAREN lexeme)]
[")" (token-RPAREN lexeme)]
[whitespace (return-without-pos (lex input-port))]
[(eof) (token-EOF 'eof)]))
(define -parse (cfg-parser
(tokens regexp-tokens)
(start top)
(end EOF)
(src-pos)
(grammar [top [(maybe-anchor regexp)
(cond [$1
`(anchored ,$2 ,(pos->sexp $1-start-pos) ,(pos->sexp $2-end-pos))]
[else
`(unanchored ,$2 ,(pos->sexp $1-start-pos) ,(pos->sexp $2-end-pos))])]]
[maybe-anchor [(ANCHOR) #t]
[() #f]]
[regexp [(regexp STAR) `(star ,$1 ,(pos->sexp $1-start-pos) ,(pos->sexp $2-end-pos))]
[(regexp OR regexp) `(or ,$1 ,$3 ,(pos->sexp $1-start-pos) ,(pos->sexp $3-end-pos))]
[(LPAREN regexp RPAREN) `(group ,$2 ,(pos->sexp $1-start-pos) ,(pos->sexp $3-end-pos))]
[(LIT) `(lit ,$1 ,(pos->sexp $1-start-pos) ,(pos->sexp $1-end-pos))]])))
(define (pos->sexp pos)
(position-offset pos))
(define (parse s)
(define ip (open-input-string s))
(port-count-lines! ip)
(-parse (lambda () (lex ip))))
(check-equal? (parse "abc")
'(unanchored (lit "abc" 1 4) 1 4))
(check-equal? (parse "a | (b*) | c")
'(unanchored (or (or (lit "a" 1 2)
(group (star (lit "b" 6 7) 6 8) 5 9)
1 9)
(lit "c" 12 13)
1 13)
1 13)))
;; Check that cfg-parser can accept error functions of 3 arguments:
(block
(define-tokens non-terminals (ONE ZERO EOF))
(define parse
(cfg-parser (tokens non-terminals)
(start ones)
(end EOF)
(error (lambda (tok-ok tok-name tok-val)
(error (format "~a ~a ~a" tok-ok tok-name tok-val))))
(grammar [ones [() null]
[(ONE ones) (cons $1 $2)]])))
(define (sequence->tokenizer s)
(define-values (more? next) (sequence-generate s))
(lambda ()
(cond [(more?) (next)]
[else (token-EOF 'eof)])))
(check-exn #rx"#t ZERO zero"
(lambda () (parse (sequence->tokenizer (list (token-ZERO "zero")))))))
;; Check that cfg-parser can accept error functions of 5 arguments:
(block
(define-tokens non-terminals (ONE ZERO EOF))
(define parse
(cfg-parser (tokens non-terminals)
(start ones)
(src-pos)
(end EOF)
(error (lambda (tok-ok tok-name tok-val start-pos end-pos)
(error (format "~a ~a ~a ~a ~a"
tok-ok tok-name tok-val
(position-offset start-pos)
(position-offset end-pos)))))
(grammar [ones [() null]
[(ONE ones) (cons $1 $2)]])))
(define (sequence->tokenizer s)
(define-values (more? next) (sequence-generate s))
(lambda ()
(cond [(more?) (next)]
[else (position-token (token-EOF 'eof)
(position #f #f #f)
(position #f #f #f))])))
(check-exn #rx"#t ZERO zero 2 3"
(lambda ()
(parse
(sequence->tokenizer
(list (position-token
(token-ZERO "zero")
(position 2 2 5)
(position 3 2 6))))))))
;; Tests used during development
(define-tokens non-terminals (PLUS MINUS STAR BAR COLON EOF))
(define lex
(lexer
["+" (token-PLUS '+)]
["-" (token-MINUS '-)]
["*" (token-STAR '*)]
["|" (token-BAR '||)]
[":" (token-COLON '|:|)]
[whitespace (lex input-port)]
[(eof) (token-EOF 'eof)]))
(define parse
(cfg-parser
(tokens non-terminals)
(start <program>)
(end EOF)
(error (lambda (a b stx)
(error 'parse "failed at ~s" stx)))
(grammar [<program> [(PLUS) "plus"]
[(<minus-program> BAR <minus-program>) (list $1 $2 $3)]
[(<program> COLON) (list $1)]]
[<minus-program> [(MINUS) "minus"]
[(<program> STAR) (cons $1 $2)]]
[<simple> [(<alts> <alts> <alts> MINUS) "yes"]]
[<alts> [(PLUS) 'plus]
[(MINUS) 'minus]]
[<random> [() '0]
[(<random> PLUS) (add1 $1)]
[(<random> PLUS) (add1 $1)]])))
(let ([p (open-input-string #;"+*|-|-*|+**" #;"-|+*|+**"
#;"+*|+**|-" #;"-|-*|-|-*"
#;"-|-*|-|-**|-|-*|-|-**"
"-|-*|-|-**|-|-*|-|-***|-|-*|-|-**|-|-*|-|-****|-|-*|-|-**|-|-*|-|-***
|-|-*|-|-**|-|-*|-|-*****|-|-*|-|-**|-|-*|-|-***|-|-*|-|-**|-|-*|-|-****|
-|-*|-|-**|-|-*|-|-***|-|-*|-|-**|-|-*|-|-*****"
;; This one fails:
#;"+*")])
(check-equal? (parse (lambda () (lex p)))
'((((((((((("minus" || "minus") . *) || (("minus" || "minus") . *)) . *) || (((("minus" || "minus") . *) || (("minus" || "minus") . *)) . *)) . *)
||
(((((("minus" || "minus") . *) || (("minus" || "minus") . *)) . *) || (((("minus" || "minus") . *) || (("minus" || "minus") . *)) . *)) . *))
.
*)
||
(((((((("minus" || "minus") . *) || (("minus" || "minus") . *)) . *) || (((("minus" || "minus") . *) || (("minus" || "minus") . *)) . *)) . *)
||
(((((("minus" || "minus") . *) || (("minus" || "minus") . *)) . *) || (((("minus" || "minus") . *) || (("minus" || "minus") . *)) . *)) . *))
.
*))
.
*)
||
(((((((((("minus" || "minus") . *) || (("minus" || "minus") . *)) . *) || (((("minus" || "minus") . *) || (("minus" || "minus") . *)) . *)) . *)
||
(((((("minus" || "minus") . *) || (("minus" || "minus") . *)) . *) || (((("minus" || "minus") . *) || (("minus" || "minus") . *)) . *)) . *))
.
*)
||
(((((((("minus" || "minus") . *) || (("minus" || "minus") . *)) . *) || (((("minus" || "minus") . *) || (("minus" || "minus") . *)) . *)) . *)
||
(((((("minus" || "minus") . *) || (("minus" || "minus") . *)) . *) || (((("minus" || "minus") . *) || (("minus" || "minus") . *)) . *)) . *))
.
*))
.
*)))))