#lang scribble/doc @(require scribble/manual scribble/struct scribble/xref scribble/bnf (for-label parser-tools/lex (prefix-in : parser-tools/lex-sre))) @title{@bold{Parser Tools}: @exec{lex} and @exec{yacc}-style Parsing} This documentation assumes familiarity with @exec{lex} and @exec{yacc} style lexer and parser generators. @; ---------------------------------------------------------------------- @section{Lexers} @defmodule[parser-tools/lex] @; ---------------------------------------- @subsection{Creating a Lexer} @defform/subs[#:literals (repetition union intersection complement concatenation char-range char-complement char-set eof special special-comment) (lexer [trigger action-expr] ...) ([trigger re (eof) (special) (special-comment)] [re id string character (repetition lo hi re) (union re ...) (intersection re ...) (complement re) (concatenation re ...) (char-range char char) (char-complement re) (char-set string) (id datum ...)])]{ Produces a function that takes an input-port, matches the @scheme[re]'s against the buffer, and returns the result of executing the corresponding @scheme[action-expr]. @margin-note{The implementation of @schememodname[syntax-color/scheme-lexer] contains a lexer for the @schememodname[scheme] language. In addition, files in the @filepath{examples} sub-directory of the @filepath{parser-tools} collection contain simpler example lexers.} An @scheme[re] is matched as follows: @itemize{ @item{@scheme[id] --- expands to the named @deftech{lexer abbreviation}; abbreviations are defined via @scheme[define-lex-abbrev] or supplied by modules like @schememodname[parser-tools/lex-sre].} @item{@scheme[string] --- matches the sequence of characters in @scheme[string].} @item{@scheme[character] --- matches a literal @scheme[character].} @item{@scheme[(repetition lo hi re)] --- matches @scheme[re] repeated between @scheme[lo] and @scheme[hi] times, inclusive; @scheme[hi] can be @scheme[+inf.0] for unbounded repetitions.} @item{@scheme[(union re ...)] --- matches if any of the sub-expressions match} @item{@scheme[(intersection re ...)] --- matches if all of the @scheme[re]s match.} @item{@scheme[(complement re)] --- matches anything that @scheme[re] does not.} @item{@scheme[(concatenation re ...)] --- matches each @scheme[re] in succession.} @item{@scheme[(char-range char char)] --- matches any character between the two (inclusive); a single character string can be used as a @scheme[char].} @item{@scheme[(char-complement re)] --- matches any character not matched by @scheme[re]. The sub-expression must be a set of characters @scheme[re].} @item{@scheme[(char-set string)] --- matches any character in the string.} @item{@scheme[(id datum ...)] --- expands the @deftech{lexer macro} named @scheme[id]; macros are defined via @scheme[define-lex-trans].} } Note that both @scheme[(concatenation)] and @scheme[""] match the empty string, @scheme[(union)] matches nothing, @scheme[(intersection)] matches any string, and @scheme[(char-complement)] matches any single character. The regular expression language is not designed to be used directly, but rather as a basis for a user-friendly notation written with regular expression macros. For example, @schememodname[parser-tools/lex-sre] supplies operators from Olin Shivers's SREs, and @schememodname[parser-tools/lex-plt-v200] supplies (deprecated) operators from the previous version of this library. Since those libraries provide operators whose names match other Scheme bindings, such as @scheme[*] and @scheme[+], they normally must be imported using a prefix: @schemeblock[ (require (prefix-in : parser-tools/lex-sre)) ] The suggested prefix is @scheme[:], so that @scheme[:*] and @scheme[:+] are imported. Of course, a prefix other than @scheme[:] (such as @scheme[re-]) will work too. Since negation is not a common operator on regular expressions, here are a few examples, using @scheme[:] prefixed SRE syntax: @itemize{ @item{@schemeblock0[(complement "1")] Matches all strings except the string @scheme["1"], including @scheme["11"], @scheme["111"], @scheme["0"], @scheme["01"], @scheme[""], and so on.} @item{@schemeblock0[(complement (:* "1"))] Matches all strings that are not sequences of @scheme["1"], including @scheme["0"], @scheme["00"], @scheme["11110"], @scheme["0111"], @scheme["11001010"] and so on.} @item{@schemeblock0[(:& (:: any-string "111" any-string) (complement (:or (:: any-string "01") (:+ "1"))))] Matches all strings that have 3 consecutive ones, but not those that end in @scheme["01"] and not those that are ones only. These include @scheme["1110"], @scheme["0001000111"] and @scheme["0111"] but not @scheme[""], @scheme["11"], @scheme["11101"], @scheme["111"] and @scheme["11111"].} @item{@schemeblock0[(:: "/*" (complement (:: any-string "*/" any-string)) "*/")] Matches Java/C block comments. @scheme["/**/"], @scheme["/******/"], @scheme["/*////*/"], @scheme["/*asg4*/"] and so on. It does not match @scheme["/**/*/"], @scheme["/* */ */"] and so on. @scheme[(:: any-string "*/" any-string)] matches any string that has a @scheme["*/"] in is, so @scheme[(complement (:: any-string "*/" any-string))] matches any string without a @scheme["*/"] in it.} @item{@schemeblock0[(:: "/*" (:* (complement "*/")) "*/")] Matches any string that starts with @scheme["/*"] and and ends with @scheme["*/"], including @scheme["/* */ */ */"]. @scheme[(complement "*/")] matches any string except @scheme["*/"]. This includes @scheme["*"] and @scheme["/"] separately. Thus @scheme[(:* (complement "*/"))] matches @scheme["*/"] by first matching @scheme["*"] and then matching @scheme["/"]. Any other string is matched directly by @scheme[(complement "*/")]. In other words, @scheme[(:* (complement "xx"))] = @scheme[any-string]. It is usually not correct to place a @scheme[:*] around a @scheme[complement].} } The following binding have special meaning inside of a lexer action: @itemize{ @item{@scheme[start-pos] --- a position struct for the first character matched.} @item{@scheme[end-pos] --- a position struct for the character after the last character in the match.} @item{@scheme[lexeme] --- the matched string.} @item{@scheme[input-port] --- the input-port being processed (this is useful for matching input with multiple lexers).} @item{@scheme[(return-without-pos x)] is a function (continuation) that immediately returns the value of @scheme[x] from the lexer. This useful in a src-pos lexer to prevent the lexer from adding source information. For example: @schemeblock[ (define get-token (lexer-src-pos ... ((comment) (get-token input-port)) ...)) ] would wrap the source location information for the comment around the value of the recursive call. Using @scheme[((comment) (return-without-pos (get-token input-port)))] will cause the value of the recursive call to be returned without wrapping position around it.} } The lexer raises an exception @scheme[(exn:read)] if none of the regular expressions match the input. Hint: If @scheme[(any-char _custom-error-behavior)] is the last rule, then there will always be a match, and @scheme[_custom-error-behavior] is executed to handle the error situation as desired, only consuming the first character from the input buffer. In addition to returning characters, input ports can return @scheme[eof-object]s. Custom input ports can also return a @scheme[special-comment] value to indicate a non-textual comment, or return another arbitrary value (a special). The non-@scheme[re] @scheme[trigger] forms handle these cases: @itemize{ @item{The @scheme[(eof)] rule is matched when the input port returns an @scheme[eof-object] value. If no @scheme[(eof)] rule is present, the lexer returns the symbol @scheme['eof] when the port returns an @scheme[eof-object] value.} @item{The @scheme[(special-comment)] rule is matched when the input port returns a @scheme[special-comment] structure. If no @scheme[special-comment] rule is present, the lexer automatically tries to return the next token from the input port.} @item{The @scheme[(special)] rule is matched when the input port returns a value other than a character, @scheme[eof-object], or @scheme[special-comment] structure. If no @scheme[(special)] rule is present, the lexer returns @scheme[(void)].}} End-of-files, specials, special-comments and special-errors can never be part of a lexeme with surrounding characters. Since the lexer gets its source information from the port, use @scheme[port-count-lines!] to enable the tracking of line and column information. Otherwise, the line and column information will return @scheme[#f]. When peeking from the input port raises an exception (such as by an embedded XML editor with malformed syntax), the exception can be raised before all tokens preceding the exception have been returned. Each time the scheme code for a lexer is compiled (e.g. when a @filepath{.ss} file containing a @scheme[lexer] form is loaded), the lexer generator is run. To avoid this overhead place the lexer into a module and compile the module to a @filepath{.zo} bytecode file.} @defform[(lexer-src-pos (trigger action-expr) ...)]{ Like @scheme[lexer], but for each @scheme[_action-result] produces by an @scheme[action-expr], returns @scheme[(make-position-token _action-result start-pos end-pos)] instead of simply @scheme[_action-result].} @deftogether[( @defidform[start-pos] @defidform[end-pos] @defidform[lexeme] @defidform[input-port] @defidform[return-without-pos] )]{ Use of these names outside of a @scheme[lexer] action is a syntax error.} @defstruct[position ([offset exact-positive-integer?] [line exact-positive-integer?] [col exact-nonnegative-integer?])]{ Instances of @scheme[position] are bound to @scheme[start-pos] and @scheme[end-pos]. The @scheme[offset] field contains the offset of the character in the input. The @scheme[line] field contains the line number of the character. The @scheme[col] field contains the offset in the current line.} @defstruct[position-token ([token any/c] [start-pos position?] [end-pos position?])]{ Lexers created with @scheme[src-pos-lexers] return instances of @scheme[position-token].} @defparam[file-path source any/c]{ A parameter that the the lexer uses as the source location if it raises a @scheme[exn:fail:rad] error. Setting this parameter allows DrScheme, for example, to open the file containing the error.} @; ---------------------------------------- @subsection{Lexer Abbreviations and Macros} @defidform[any-char]{A @tech{lexer abbreviation} that matches any character.} @defidform[any-string]{A @tech{lexer abbreviation} that matches any string.} @defidform[nothing]{A @tech{lexer abbreviation} that matches no string.} @deftogether[( @defidform[alphabetic] @defidform[lower-case] @defidform[upper-case] @defidform[title-case] @defidform[symbolic] @defidform[punctuation] @defidform[graphic] @defidform[whitespace] @defidform[blank] @defidform[iso-control] )]{ @tech{Lexer abbreviations} that match @scheme[char-alphabetic?] characters, @scheme[char-lower-case?] characters, etc.} @defform[(define-lex-abbrev id re)]{ Defines a @tech{lexer abbreviation} by associating a regular expression to be used in place of the @scheme[id] in other regular expression. The definition of name has the same scoping properties as a other syntactic binding (e.g., it can be exported from a module).} @defform[(define-lex-abbrevs (id re) ...)]{ Like @scheme[define-lex-abbrev], but defines several @tech{lexer abbreviations}.} @defform[(define-lex-trans id trans-expr)]{ Defines a @tech{lexer macro}, where @scheme[trans-expr] produces a transformer procedure that takes one argument. When @scheme[(id _datum ...)] appears as a regular expression, it is replaced with the result of applying the transformer to the expression.} @; ---------------------------------------- @subsection{Tokens} Each @scheme[_action-expr] in a @scheme[lexer] form can produce any kind of value, but for many purposes, producing a @deftech{token} value is useful. Tokens are usually necessary for inter-operating with a parser generated by @scheme[parser-tools/parser], but tokens not be the right choice when using @scheme[lexer] in other situations. @defform[(define-tokens group-id (token-id ...))]{ Binds @scheme[group-id] to the group of tokens being defined. For each @scheme[token-id], a function @schemeidfont{token-}@scheme[token-id] is created that takes any value and puts it in a token record specific to @scheme[token-id]. The token value is inspected using @scheme[token-name] and @scheme[token-value]. A token cannot be named @schemeidfont{error}, since @schemeidfont{error} it has special use in the parser.} @defform[(define-empty-tokens group-id (token-id ...) )]{ Like @scheme[define-tokens], except a each token constructor @schemeidfont{token-}@scheme[token-id] take nos arguments and returns @scheme[(@scheme[quote] token-id)].} @defproc[(token-name [t (or/c token? symbol?)]) symbol?]{ Returns the name of a token that is represented either by a symbol or a token structure.} @defproc[(token-value [t (or/c token? symbol?)]) any/c]{ Returns the value of a token that is represented either by a symbol or a token structure, returning @scheme[#f] for a symbol token.} @defproc[(token? [v any/c]) boolean?]{ Returns @scheme[#t] if @scheme[val] is a token structure, @scheme[#f] otherwise.} @; ---------------------------------------------------------------------- @section{Lex SRE Operators} @defmodule[parser-tools/lex-sre] @; Put the docs in a macro, so that we can bound the scope of @; the import of `*', etc.: @(define-syntax-rule (lex-sre-doc) (... (begin (require (for-label parser-tools/lex-sre)) @defform[(* re ...)]{ Repetition of @scheme[re] sequence 0 or more times.} @defform[(+ re ...)]{ Repetition of @scheme[re] sequence 0 or more times.} @defform[(? re ...)]{ Zero or one occurrence of @scheme[re] sequence.} @defform[(= n re ...)]{ Exactly @scheme[n] occurrences of @scheme[re] sequence, where @scheme[n] must be a literal exact, non-negative number.} @defform[(>= n re ...)]{ At least @scheme[n] occurrences of @scheme[re] sequence, where @scheme[n] must be a literal exact, non-negative number.} @defform[(** n m re ...)]{ Between @scheme[n] and @scheme[m] (inclusive) occurrences of @scheme[re] sequence, where @scheme[n] must be a literal exact, non-negative number, and @scheme[m] must be literally either @scheme[#f], @scheme[+inf.0], or an exact, non-negative number; a @scheme[#f] value for @scheme[m] is the same as @scheme[+inf.0].} @defform[(or re ...)]{ Same as @scheme[(union re ...)].} @deftogether[( @defform[(: re ...)] @defform[(seq re ...)] )]{ Both forms concatenate the @scheme[re]s.} @defform[(& re ...)]{ Intersects the @scheme[re]s.} @defform[(- re ...)]{ The set difference of the @scheme[re]s.} @defform[(~ re ...)]{ Character-set complement, which each @scheme[re] must match exactly one character.} @defform[(/ char-or-string ...)]{ Character ranges, matching characters between successive pairs of characters.} ))) @(lex-sre-doc) @; ---------------------------------------------------------------------- @section{Parsers} @defmodule[parser-tools/yacc] @defform/subs[(parser clause ...) ([clause ....])]{ Creates a parser. The clauses may be in any order (as long as there are no duplicates and all non-optional arguments are present). @itemize{ @item{@scheme[(debug filename)] @italic{OPTIONAL} causes the parser generator to write the LALR table to the file named @filepath{filename} (unless the file exists). @filepath{filename} must be a string. Additionally, if a debug file is specified, when a running generated parser encounters a parse error on some input file, after the user specified error expression returns, the complete parse stack is printed to assist in debugging the grammar of that particular parser. The numbers in the stack printout correspond to the state numbers in the LALR table file.} @item{@scheme[(yacc-output filename)] @italic{OPTIONAL} causes the parser generator to write a grammar file in the syntax of YACC/Bison. The file might not be a valid YACC file because the scheme grammar can use symbols that are invalid in C.} @item{@scheme[(suppress)] @italic{OPTIONAL} causes the parser generator not to report shift/reduce or reduce/reduce conflicts.} @item{@scheme[(src-pos)] @italic{OPTIONAL} causes the generated parser to expect input in the form @scheme[(make-position-token token position position)] instead of simply @scheme[token]. Include this option when using the parser with a lexer generated with @scheme[lexer-src-pos].} @item{@scheme[(error expression)] expression should evaluate to a function which will be executed for its side-effect whenever the parser encounters an error. If the @scheme[src-pos] option is present, the function should accept 5 arguments, @schemeblock[(lambda (token-ok token-name token-value start-pos end-pos) ...)]. Otherwise it should accept 3, @schemeblock[(lambda (token-ok token-name token-value) ...)]. The first argument will be @scheme[#f] iff the error is that an invalid token was received. The second and third arguments will be the name and the value of the token at which the error was detected. The fourth and fifth arguments, if present, provide the source positions of that token.} @item{@scheme[(tokens group-name ...)] declares that all of the tokens defined in the groups can be handled by this parser.} @item{@scheme[(start non-terminal-name ...)] declares a list of starting non-terminals for the grammar.} @item{@scheme[(end token-name ...)] specifies a set of tokens from which some member must follow any valid parse. For example an EOF token would be specified for a parser that parses entire files and a @nonterm{newline} token for a parser that parses entire lines individually.} @item{@scheme[(precs (assoc token-name ...) ...)] @italic{OPTIONAL} precedence declarations to resolve shift/reduce and reduce/reduce conflicts as in YACC/BISON. @scheme[assoc] must be one of @scheme[left], @scheme[right] or @scheme[nonassoc]. States with multiple shift/reduce or reduce/reduce conflicts or some combination thereof are not resolved with precedence.} @item{@schemeblock0[(grammar (non-terminal ((grammar-symbol ...) (prec token-name) expression) ...) ...)] declares the @scheme[grammar] to be parsed. Each @scheme[grammar-symbol] must be a @scheme[token-name] or @scheme[non-terminal]. The @scheme[prec] declaration is optional. @scheme[expression] is a semantic action which will be evaluated when the input is found to match its corresponding production. Each action is scheme code that has the same scope as its parser's definition, except that the variables @scheme[$1], ..., @scheme[$n] are bound in the expression and may hide outside bindings of @scheme[$1], ... @scheme[$n]. @scheme[$x] is bound to the result of the action for the @scheme[$x]@superscript{th} grammar symbol on the right of the production, if that grammar symbol is a non-terminal, or the value stored in the token if the grammar symbol is a terminal. Here @scheme[n] is the number of @scheme[grammar-symbol]s on the right of the production. If the @scheme[src-pos] option is present in the parser, variables @scheme[$1-start-pos], ..., @scheme[$n-start-pos] and @scheme[$1-end-pos], ..., @scheme[$n-end-pos] are also available and refer to the position structures corresponding to the start and end of the corresponding @scheme[grammar-symbol]. Grammar symbols defined as empty-tokens have no @scheme[$n] associated, but do have @scheme[$n-start-pos] and @scheme[$n-end-pos]. All of the productions for a given non-terminal must be grouped with it, i.e., no non-terminal may appear twice on the left hand side in a parser.} } The result of a parser expression with one start non-terminal is a function, @scheme[f], that takes one argument. This argument must be a zero argument function, @scheme[t], that produces successive tokens of the input each time it is called. If desired, the @scheme[t] may return symbols instead of tokens. The parser will treat symbols as tokens of the corresponding name (with @scheme[#f] as a value, so it is usual to return symbols only in the case of empty tokens). @scheme[f] returns the value associated with the parse tree by the semantic actions. If the parser encounters an error, after invoking the supplied error function, it will try to use error productions to continue parsing. If it cannot, it raises a read error. If multiple start non-terminals are provided, the parser expression will result in a list of parsing functions (each one will individually behave as if it were the result of a parser expression with only one start non-terminal), one for each start non-terminal, in the same order. Each time the scheme code for a lexer is compiled (e.g. when a @filepath{.ss} file containing a @scheme[parser] form is loaded), the parser generator is run. To avoid this overhead place the parser into a module and compile the module to a @filepath{.zo} bytecode file.} @; ---------------------------------------------------------------------- @section{Converting @exec{yacc} or @exec{bison} Grammars} @defmodule[parser-tools/yacc-to-scheme] @defproc[(trans [file path-string?]) any/c]{ Reads a C @exec{yacc}/@exec{bison} grammar from @scheme[file] and produces an s-expression that represents a scheme parser for use with @scheme[parser]. This function is intended to assist in the manual conversion of grammars for use with @scheme[parser], and not as a fully automatic conversion tool. It is not entirely robust. For example, if the C actions in the original grammar have nested blocks, the tool will fail. Annotated examples are in the @filepath{examples} subdirectory of the @filepath{parser-tools} collection.}