You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
br-parser-tools/collects/mrspidey/Sba/lib/lib-set.ss

112 lines
2.9 KiB
Scheme

;; library-set.ss
; ----------------------------------------------------------------------
; Copyright (C) 1995-97 Cormac Flanagan
;
; This program is free software; you can redistribute it and/or
; modify it under the terms of the GNU General Public License
; version 2 as published by the Free Software Foundation.
;
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; GNU General Public License for more details.
;
; You should have received a copy of the GNU General Public License
; along with this program; if not, write to the Free Software
; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
; ----------------------------------------------------------------------
;;
;; Set operations implemented by lists.
;; Identity of elements is based on eq?.
;; These should probably be sped up some day.
;; ----------------------------------------------------------------------
(define empty-set '())
(define empty-set? null?)
;; construct a set
(define set
(lambda l
(list->set l)))
;; construct a set from a list by removing duplicates
(define list->set
(match-lambda
[() '()]
[(x . y) (if (memq x y)
(list->set y)
(cons x (list->set y)))]))
(define list->set-equal?
(match-lambda
[() '()]
[(x . y) (if (member x y)
(list->set y)
(cons x (list->set y)))]))
;; test for membership
(define element-of?
(lambda (x set)
(and (memq x set) #t)))
(define (set-add x set)
(if (memq x set) set (cons x set)))
(define cardinality length)
;; does s2 contain s1?
(define set<=
(lambda (a b)
(and (andmap (lambda (x) (memq x b)) a) #t)))
;; are two sets equal? (mutually containing)
(define set-eq?
(lambda (a b)
(and (= (cardinality a) (cardinality b)) (set<= a b))))
;; unite two sets
(define union2
(lambda (a b)
(if (null? b)
a
(foldr (lambda (x b)
(if (memq x b)
b
(cons x b)))
b
a))))
;; unite any number of sets
(define union
(lambda l
(foldr union2 '() l)))
(define setdiff2
(lambda (a b)
(if (or (null? a) (null? b))
a
(if (memq (car a) b)
(setdiff2 (cdr a) b)
(cons (car a) (setdiff2 (cdr a) b))))))
(define setdiff
(lambda l
(if (null? l)
'()
(setdiff2 (car l) (foldr union2 '() (cdr l))))))
(define intersect2
(lambda (a b)
(cond [(or (null? a) (null? b)) '()]
[(memq (car b) a) (cons (car b) (intersect2 a (cdr b)))]
[else (intersect2 a (cdr b))])))
(define intersect
(lambda l
(if (null? l)
'()
(foldl intersect2 (car l) l))))