|
|
|
(module deriv mzscheme
|
|
|
|
|
|
|
|
(require (lib "list.ss")
|
|
|
|
"re.ss"
|
|
|
|
"util.ss")
|
|
|
|
|
|
|
|
(provide build-dfa print-dfa (struct dfa (num-states start-state final-states/actions transitions)))
|
|
|
|
|
|
|
|
(define e (build-epsilon))
|
|
|
|
(define z (build-zero))
|
|
|
|
|
|
|
|
;; get-char-groups : re -> (list-of char-setR?)
|
|
|
|
;; Collects the char-setRs in r that could be used in
|
|
|
|
;; taking the derivative of r.
|
|
|
|
(define (get-char-groups r)
|
|
|
|
(cond
|
|
|
|
((or (eq? r e) (eq? r z)) null)
|
|
|
|
((char-setR? r) (list r))
|
|
|
|
((concatR? r)
|
|
|
|
(if (re-nullable? (concatR-re1 r))
|
|
|
|
(append (get-char-groups (concatR-re1 r))
|
|
|
|
(get-char-groups (concatR-re2 r)))
|
|
|
|
(get-char-groups (concatR-re1 r))))
|
|
|
|
((repeatR? r)
|
|
|
|
(get-char-groups (repeatR-re r)))
|
|
|
|
((orR? r)
|
|
|
|
(apply append (map get-char-groups (orR-res r))))))
|
|
|
|
|
|
|
|
(test-block ((c (make-cache))
|
|
|
|
(r1 (->re #\1 c))
|
|
|
|
(r2 (->re #\2 c)))
|
|
|
|
((get-char-groups e) null)
|
|
|
|
((get-char-groups z) null)
|
|
|
|
((get-char-groups r1) (list r1))
|
|
|
|
((get-char-groups (->re `(@ ,r1 ,r2) c))
|
|
|
|
(list r1))
|
|
|
|
((get-char-groups (->re `(@ ,e ,r2) c))
|
|
|
|
(list r2))
|
|
|
|
((get-char-groups (->re `(@ (* ,r1) ,r2) c))
|
|
|
|
(list r1 r2))
|
|
|
|
((get-char-groups (->re `(* ,r1) c))
|
|
|
|
(list r1))
|
|
|
|
((get-char-groups (->re `(: (* ,r1) (@ (* ,r2) "3") "4") c))
|
|
|
|
(list r1 r2 (->re "3" c) (->re "4" c)))
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
;; A char-set is a (list-of char) that is sorted and duplicate-free
|
|
|
|
|
|
|
|
;; partition : (list-of char-set) -> (list-of char-set)
|
|
|
|
;; The coarsest refinment r of sets such that the char-sets in r
|
|
|
|
;; are pairwise disjoint.
|
|
|
|
(define (partition sets)
|
|
|
|
(cond
|
|
|
|
((null? sets) null)
|
|
|
|
(else
|
|
|
|
(partition1 (car sets) (partition (cdr sets))))))
|
|
|
|
|
|
|
|
;; partition1 : char-set (list-of char-set) -> (list-of char-set)
|
|
|
|
;; All the char-sets in sets must be pairwise disjoint. Splits set
|
|
|
|
;; against each element in sets.
|
|
|
|
(define (partition1 set sets)
|
|
|
|
(cond
|
|
|
|
((null? set) sets)
|
|
|
|
((null? sets) (list set))
|
|
|
|
(else
|
|
|
|
(let ((set2 (car sets)))
|
|
|
|
(let-values (((i s1 s2) (split set set2)))
|
|
|
|
(let ((rest (partition1 s1 (cdr sets))))
|
|
|
|
(cond
|
|
|
|
((null? i)
|
|
|
|
(cons s2 rest))
|
|
|
|
((null? s2)
|
|
|
|
(cons i rest))
|
|
|
|
(else
|
|
|
|
(cons i (cons s2 rest))))))))))
|
|
|
|
|
|
|
|
(test-block ((sl string->list))
|
|
|
|
((partition null) null)
|
|
|
|
((partition (list (sl "1234"))) (list (sl "1234")))
|
|
|
|
((partition (list (sl "1234") (sl "0235")))
|
|
|
|
(list (sl "23") (sl "05") (sl "14")))
|
|
|
|
((partition (list (sl "12349") (sl "02359") (sl "67") (sl "29")))
|
|
|
|
(list (sl "29") (sl "67") (sl "3") (sl "05") (sl "14")))
|
|
|
|
)
|
|
|
|
|
|
|
|
(test-block ((sl string->list))
|
|
|
|
((partition1 (sl "bcdjw") null) (list (sl "bcdjw")))
|
|
|
|
((partition1 null null) null)
|
|
|
|
((partition1 null (list (sl "a") (sl "b") (sl "1")))
|
|
|
|
(list (sl "a") (sl "b") (sl "1")))
|
|
|
|
((partition1 (sl "bcdjw")
|
|
|
|
(list (sl "z")
|
|
|
|
(sl "ab")
|
|
|
|
(sl "dj")))
|
|
|
|
(list (sl "z") (sl "b") (sl "a") (sl "dj") (sl "cw"))))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
;; deriveR : re * char cache -> re
|
|
|
|
(define (deriveR r c cache)
|
|
|
|
(cond
|
|
|
|
((or (eq? r e) (eq? r z)) z)
|
|
|
|
((char-setR? r)
|
|
|
|
(if (memq c (char-setR-chars r)) e z))
|
|
|
|
((concatR? r)
|
|
|
|
(let* ((r1 (concatR-re1 r))
|
|
|
|
(r2 (concatR-re2 r))
|
|
|
|
(d (build-concat (deriveR r1 c cache) r2 cache)))
|
|
|
|
(if (re-nullable? r1)
|
|
|
|
(build-or (list d (deriveR r2 c cache)) cache)
|
|
|
|
d)))
|
|
|
|
((repeatR? r)
|
|
|
|
(build-concat (deriveR (repeatR-re r) c cache) r cache))
|
|
|
|
((orR? r)
|
|
|
|
(build-or (map (lambda (x) (deriveR x c cache))
|
|
|
|
(orR-res r))
|
|
|
|
cache))
|
|
|
|
((andR? r)
|
|
|
|
(build-and (map (lambda (x) (deriveR x c cache))
|
|
|
|
(andR-res r))
|
|
|
|
cache))
|
|
|
|
((negR? r)
|
|
|
|
(build-neg (deriveR (negR-re r) c cache) cache))))
|
|
|
|
|
|
|
|
(test-block ((c (make-cache))
|
|
|
|
(r1 (->re #\a c))
|
|
|
|
(r2 (->re `(* #\a) c))
|
|
|
|
(r3 (->re `(* ,r2) c))
|
|
|
|
(r4 (->re `(@ #\a ,r2) c))
|
|
|
|
(r5 (->re `(* ,r4) c))
|
|
|
|
(r6 (->re `(: ,r5 #\a) c))
|
|
|
|
(r7 (->re `(@ ,r2 ,r2) c)))
|
|
|
|
((deriveR e #\a c) z)
|
|
|
|
((deriveR z #\a c) z)
|
|
|
|
((deriveR r1 #\b c) z)
|
|
|
|
((deriveR r1 #\a c) e)
|
|
|
|
((deriveR r2 #\a c) r2)
|
|
|
|
((deriveR r2 #\b c) z)
|
|
|
|
((deriveR r3 #\a c) (->re `(@ ,r2 ,r3) c))
|
|
|
|
((deriveR r3 #\b c) z)
|
|
|
|
((deriveR r4 #\a c) r2)
|
|
|
|
((deriveR r4 #\b c) z)
|
|
|
|
((deriveR r5 #\a c) (->re `(@ ,r2 ,r5) c))
|
|
|
|
((deriveR r5 #\b c) z)
|
|
|
|
((deriveR r6 #\a c) (->re `(: (@ ,r2 ,r5) (epsilon)) c))
|
|
|
|
((deriveR r6 #\b c) z)
|
|
|
|
((deriveR r7 #\a c) (->re `(: (@ ,r2 ,r2) ,r2) c))
|
|
|
|
((deriveR r7 #\b c) z))
|
|
|
|
|
|
|
|
|
|
|
|
;; An re-action is (cons re action)
|
|
|
|
|
|
|
|
;; derive : (list-of re-action) char cache -> (union (list-of re-action) #f)
|
|
|
|
;; applies deriveR to all the re-actions's re parts.
|
|
|
|
;; Returns #f if the derived state is equivalent to z.
|
|
|
|
(define (derive r c cache)
|
|
|
|
(let ((new-r (map (lambda (ra)
|
|
|
|
(cons (deriveR (car ra) c cache) (cdr ra)))
|
|
|
|
r)))
|
|
|
|
(if (andmap (lambda (x) (eq? z (car x)))
|
|
|
|
new-r)
|
|
|
|
#f
|
|
|
|
new-r)))
|
|
|
|
|
|
|
|
(test-block ((c (make-cache))
|
|
|
|
(r1 (->re #\1 c))
|
|
|
|
(r2 (->re #\2 c)))
|
|
|
|
((derive null #\1 c) #f)
|
|
|
|
((derive (list (cons r1 1) (cons r2 2)) #\1 c)
|
|
|
|
(list (cons e 1) (cons z 2)))
|
|
|
|
((derive (list (cons r1 1) (cons r2 2)) #\3 c) #f))
|
|
|
|
|
|
|
|
|
|
|
|
;; get-final : (list-of re-action) -> (union #f syntax-object)
|
|
|
|
;; An re that accepts e represents a final state. Return the
|
|
|
|
;; action from the first final state or #f if there is none.
|
|
|
|
(define (get-final res)
|
|
|
|
(cond
|
|
|
|
((null? res) #f)
|
|
|
|
((re-nullable? (caar res)) (cdar res))
|
|
|
|
(else (get-final (cdr res)))))
|
|
|
|
(print-struct #t)
|
|
|
|
(test-block ((c (make-cache))
|
|
|
|
(r1 (->re #\a c))
|
|
|
|
(r2 (->re #\b c))
|
|
|
|
(b (list (cons z 1) (cons z 2) (cons z 3) (cons e 4) (cons z 5)))
|
|
|
|
(a (list (cons r1 1) (cons r2 2))))
|
|
|
|
((derive null #\a c) #f)
|
|
|
|
((derive a #\a c) (list (cons e 1) (cons z 2)))
|
|
|
|
((derive a #\b c) (list (cons z 1) (cons e 2)))
|
|
|
|
((derive a #\c c) #f)
|
|
|
|
((derive (list (cons (->re `(: " " "\n" ",") c) 1)
|
|
|
|
(cons (->re `(@ (? "-") (+ (- "0" "9"))) c) 2)
|
|
|
|
(cons (->re `(@ "-" (+ "-")) c) 3)
|
|
|
|
(cons (->re "[" c) 4)
|
|
|
|
(cons (->re "]" c) 5)) #\[ c)
|
|
|
|
b)
|
|
|
|
((get-final a) #f)
|
|
|
|
((get-final (list (cons e 1) (cons e 2))) 1)
|
|
|
|
((get-final b) 4))
|
|
|
|
|
|
|
|
|
|
|
|
;; A state is (make-state (list-of re-action) nat)
|
|
|
|
(define-struct state (spec index))
|
|
|
|
|
|
|
|
;; get->key : re-action -> (list-of nat)
|
|
|
|
;; states are indexed by the list of indexes of their res
|
|
|
|
(define (get-key s)
|
|
|
|
(map (lambda (x) (re-index (car x))) s))
|
|
|
|
|
|
|
|
;; compute-chars : (list-of state) -> (list-of char-set)
|
|
|
|
;; Computed the sets of equivalent characters for taking the
|
|
|
|
;; derivative of the car of st. Only one derivative per set need to be taken.
|
|
|
|
(define (compute-chars st)
|
|
|
|
(cond
|
|
|
|
((null? st) null)
|
|
|
|
(else
|
|
|
|
(partition (map char-setR-chars
|
|
|
|
(apply append (map (lambda (x) (get-char-groups (car x)))
|
|
|
|
(state-spec (car st)))))))))
|
|
|
|
|
|
|
|
(test-block ((c (make-cache))
|
|
|
|
(r1 (->re `(- #\1 #\4) c))
|
|
|
|
(r2 (->re `(- #\2 #\3) c)))
|
|
|
|
((compute-chars null) null)
|
|
|
|
((compute-chars (list (make-state null 1))) null)
|
|
|
|
((compute-chars (list (make-state (list (cons r1 1) (cons r2 2)) 2)))
|
|
|
|
(list (list #\2 #\3) (list #\1 #\4))))
|
|
|
|
|
|
|
|
|
|
|
|
;; A dfa is (make-dfa int int
|
|
|
|
;; (list-of (cons int syntax-object))
|
|
|
|
;; (list-of (cons int (list-of (cons (list-of char) int)))))
|
|
|
|
;; Each transitions is a state and a list of chars with the state to transition to.
|
|
|
|
;; The finals and transitions are sorted by state number, and duplicate free.
|
|
|
|
(define-struct dfa (num-states start-state final-states/actions transitions))
|
|
|
|
|
|
|
|
;; build-dfa : (list-of re-action) cache -> dfa
|
|
|
|
(define (build-dfa rs cache)
|
|
|
|
(let* ((transitions (make-hash-table))
|
|
|
|
(get-state-number (make-counter))
|
|
|
|
(start (make-state rs (get-state-number))))
|
|
|
|
(cache (cons 'state (get-key rs)) (lambda () start))
|
|
|
|
(let loop ((old-states (list start))
|
|
|
|
(new-states null)
|
|
|
|
(all-states (list start))
|
|
|
|
(cs (compute-chars (list start))))
|
|
|
|
(cond
|
|
|
|
((and (null? old-states) (null? new-states))
|
|
|
|
(make-dfa (get-state-number) (state-index start)
|
|
|
|
(mergesort (filter (lambda (x) (cdr x))
|
|
|
|
(map (lambda (state)
|
|
|
|
(cons (state-index state) (get-final (state-spec state))))
|
|
|
|
all-states))
|
|
|
|
(lambda (a b) (< (car a) (car b))))
|
|
|
|
(mergesort (hash-table-map transitions
|
|
|
|
(lambda (state trans)
|
|
|
|
(cons (state-index state)
|
|
|
|
(map (lambda (t)
|
|
|
|
(cons (car t)
|
|
|
|
(state-index (cdr t))))
|
|
|
|
trans))))
|
|
|
|
(lambda (a b) (< (car a) (car b))))))
|
|
|
|
((null? old-states)
|
|
|
|
(loop new-states null all-states (compute-chars new-states)))
|
|
|
|
((null? cs)
|
|
|
|
(loop (cdr old-states) new-states all-states (compute-chars (cdr old-states))))
|
|
|
|
(else
|
|
|
|
(let* ((state (car old-states))
|
|
|
|
(c (car cs))
|
|
|
|
(new-re (derive (state-spec state) (car c) cache)))
|
|
|
|
(cond
|
|
|
|
(new-re
|
|
|
|
(let* ((new-state? #f)
|
|
|
|
(new-state (cache (cons 'state (get-key new-re))
|
|
|
|
(lambda ()
|
|
|
|
(set! new-state? #t)
|
|
|
|
(make-state new-re (get-state-number)))))
|
|
|
|
(new-all-states (if new-state? (cons new-state all-states) all-states)))
|
|
|
|
(hash-table-put! transitions
|
|
|
|
state
|
|
|
|
(cons (cons c new-state)
|
|
|
|
(hash-table-get transitions state
|
|
|
|
(lambda () null))))
|
|
|
|
(cond
|
|
|
|
(new-state?
|
|
|
|
(loop old-states (cons new-state new-states) new-all-states (cdr cs)))
|
|
|
|
(else
|
|
|
|
(loop old-states new-states new-all-states (cdr cs))))))
|
|
|
|
(else (loop old-states new-states all-states (cdr cs))))))))))
|
|
|
|
|
|
|
|
(define (print-dfa x)
|
|
|
|
(printf "number of states: ~a~n" (dfa-num-states x))
|
|
|
|
(printf "start state: ~a~n" (dfa-start-state x))
|
|
|
|
(printf "final states: ~a~n" (map car (dfa-final-states/actions x)))
|
|
|
|
(for-each (lambda (trans)
|
|
|
|
(printf "state: ~a~n" (car trans))
|
|
|
|
(for-each (lambda (rule)
|
|
|
|
(printf " -~a-> ~a~n"
|
|
|
|
(car rule)
|
|
|
|
(cdr rule)))
|
|
|
|
(cdr trans)))
|
|
|
|
(dfa-transitions x)))
|
|
|
|
|
|
|
|
(define (build-test-dfa rs)
|
|
|
|
(let ((c (make-cache)))
|
|
|
|
(build-dfa (map (lambda (x) (cons (->re x c) 'action))
|
|
|
|
rs)
|
|
|
|
c)))
|
|
|
|
#|
|
|
|
|
(define t1 (build-test-dfa null))
|
|
|
|
(define t2 (build-test-dfa `(#\a)))
|
|
|
|
(define t3 (build-test-dfa `(#\a #\b)))
|
|
|
|
(define t4 (build-test-dfa `((* #\a)
|
|
|
|
(* (@ #\a #\b)))))
|
|
|
|
(define t5 (build-test-dfa `((@ (* (: #\0 #\1)) #\1))))
|
|
|
|
(define t6 (build-test-dfa `((* (* #\a))
|
|
|
|
(* (@ #\b (* #\b))))))
|
|
|
|
(define t7 (build-test-dfa `((@ (* #\a) (* #\b) (* #\c) (* #\d) (* #\e)))))
|
|
|
|
(define t8
|
|
|
|
(build-test-dfa `((@ (* (: #\a #\b)) #\a (: #\a #\b) (: #\a #\b) (: #\a #\b) (: #\a #\b)))))
|
|
|
|
(define x (build-test-dfa `((: " " "\n" ",")
|
|
|
|
(@ (? "-") (+ (- "0" "9")))
|
|
|
|
(@ "-" (+ "-"))
|
|
|
|
"["
|
|
|
|
"]")))
|
|
|
|
|#
|
|
|
|
)
|