2021 solutions
parent
4d5f19b410
commit
af8752d29e
@ -0,0 +1,20 @@
|
||||
#lang br
|
||||
(require racket/file rackunit)
|
||||
|
||||
(define depths (map string->number (file->lines "01.rktd")))
|
||||
|
||||
(define (positive-deltas depths)
|
||||
(filter positive?
|
||||
(for/list ([d1 (in-list depths)]
|
||||
[d2 (in-list (cdr depths))])
|
||||
(- d2 d1))))
|
||||
|
||||
(check-equal? (length (positive-deltas depths)) 1167)
|
||||
|
||||
(define (trios depths)
|
||||
(for/list ([d1 (in-list depths)]
|
||||
[d2 (in-list (cdr depths))]
|
||||
[d3 (in-list (cddr depths))])
|
||||
(+ d1 d2 d3)))
|
||||
|
||||
(check-equal? (length (positive-deltas (trios depths))) 1130)
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,32 @@
|
||||
#lang br
|
||||
(require racket/file sugar/list rackunit)
|
||||
|
||||
(define instructions
|
||||
(slice-at (for/list ([datum (in-port read (open-input-file "02.rktd"))])
|
||||
datum) 2))
|
||||
|
||||
(define (solve matcher)
|
||||
(for/fold ([pos 0]
|
||||
[depth 0]
|
||||
[aim 0]
|
||||
#:result (* pos depth))
|
||||
([i (in-list instructions)])
|
||||
(matcher pos depth aim i)))
|
||||
|
||||
(define (solve-1)
|
||||
(solve (λ (pos depth aim i)
|
||||
(match i
|
||||
[(list 'forward amt) (values (+ pos amt) depth aim)]
|
||||
[(list 'down amt) (values pos (+ depth amt) aim)]
|
||||
[(list 'up amt) (values pos (- depth amt) aim)]))))
|
||||
|
||||
(check-equal? (solve-1) 1488669)
|
||||
|
||||
(define (solve-2)
|
||||
(solve (λ (pos depth aim i)
|
||||
(match i
|
||||
[(list 'forward amt) (values (+ pos amt) (+ depth (* aim amt)) aim)]
|
||||
[(list 'down amt) (values pos depth (+ aim amt))]
|
||||
[(list 'up amt) (values pos depth (- aim amt))]))))
|
||||
|
||||
(check-equal? (solve-2) 1176514794)
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,40 @@
|
||||
#lang br
|
||||
(require racket/file rackunit)
|
||||
|
||||
(define lines (map string->list (file->lines "03.rktd")))
|
||||
(define (digit-columns lines) (apply map list lines))
|
||||
|
||||
(define (most-common-digit chars)
|
||||
(define zeroes (count (λ (c) (char=? c #\0)) chars))
|
||||
(define most-threshold (/ (length chars) 2))
|
||||
(cond
|
||||
[(= zeroes most-threshold) #f]
|
||||
[(> zeroes most-threshold) #\0]
|
||||
[else #\1]))
|
||||
|
||||
(define (least-common-digit chars)
|
||||
(match (most-common-digit chars)
|
||||
[#false #false]
|
||||
[#\0 #\1]
|
||||
[_ #\0]))
|
||||
|
||||
(define (chars->binary-number chars)
|
||||
(string->number (list->string chars) 2))
|
||||
|
||||
(define gamma-rate (chars->binary-number (map most-common-digit (digit-columns lines))))
|
||||
(define epsilon-rate (chars->binary-number (map least-common-digit (digit-columns lines))))
|
||||
|
||||
(check-equal? (* gamma-rate epsilon-rate) 4174964)
|
||||
|
||||
(define (find-digit proc default)
|
||||
(for/fold ([lines lines]
|
||||
#:result (chars->binary-number (car lines)))
|
||||
([i (in-range (length (car lines)))]
|
||||
#:break (= (length lines) 1))
|
||||
(define target (or (proc (list-ref (digit-columns lines) i)) default))
|
||||
(filter (λ (line) (char=? (list-ref line i) target)) lines)))
|
||||
|
||||
(define oxygen-rate (find-digit most-common-digit #\1))
|
||||
(define co2-rate (find-digit least-common-digit #\0))
|
||||
|
||||
(check-equal? (* oxygen-rate co2-rate) 4474944)
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,43 @@
|
||||
#lang br
|
||||
(require racket/file sugar rackunit)
|
||||
|
||||
(define lines (file->lines "04.rktd"))
|
||||
|
||||
(define numbers-to-draw (map string->number (string-split (string-replace (car lines) "," " "))))
|
||||
|
||||
(define boards
|
||||
(map list->vector (slice-at (map string->number (string-split (string-join (cdr lines)))) 25)))
|
||||
|
||||
(define winning-lines
|
||||
(let ()
|
||||
(define rows '((0 1 2 3 4) (5 6 7 8 9) (10 11 12 13 14) (15 16 17 18 19) (20 21 22 23 24)))
|
||||
(define cols (apply map list rows))
|
||||
(append rows cols)))
|
||||
|
||||
(define (board-wins board)
|
||||
(for/or ([winning-line winning-lines])
|
||||
(for/and ([idx winning-line])
|
||||
(eq? (vector-ref board idx) #true))))
|
||||
|
||||
(define (run-game boards)
|
||||
(for*/fold ([boards boards]
|
||||
[winners null]
|
||||
#:result (reverse winners))
|
||||
([number numbers-to-draw]
|
||||
#:break (empty? boards))
|
||||
(for ([board boards])
|
||||
(define pos-of-number (vector-member number board))
|
||||
(when pos-of-number
|
||||
(vector-set! board pos-of-number #true)))
|
||||
(define-values (new-winners losers) (partition board-wins boards))
|
||||
(values losers (append (for/list ([winner new-winners])
|
||||
(cons number winner)) winners))))
|
||||
|
||||
(define (calc-score res)
|
||||
(match res
|
||||
[(cons last-number board) (* last-number (apply + (filter number? (vector->list board))))]))
|
||||
|
||||
(define results (run-game boards))
|
||||
(check-equal? (calc-score (first results)) 64084)
|
||||
(check-equal? (calc-score (last results)) 12833)
|
||||
|
@ -0,0 +1,601 @@
|
||||
27,14,70,7,85,66,65,57,68,23,33,78,4,84,25,18,43,71,76,61,34,82,93,74,26,15,83,64,2,35,19,97,32,47,6,51,99,20,77,75,56,73,80,86,55,36,13,95,52,63,79,72,9,10,16,8,69,11,50,54,81,22,45,1,12,88,44,17,62,0,96,94,31,90,39,92,37,40,5,98,24,38,46,21,30,49,41,87,91,60,48,29,59,89,3,42,58,53,67,28
|
||||
|
||||
31 23 52 26 8
|
||||
27 89 37 80 46
|
||||
97 19 63 34 79
|
||||
13 59 45 12 73
|
||||
42 25 22 6 39
|
||||
|
||||
27 71 24 3 0
|
||||
79 42 32 72 62
|
||||
99 52 11 92 33
|
||||
38 22 16 44 39
|
||||
35 26 76 49 58
|
||||
|
||||
39 19 82 53 57
|
||||
52 98 69 77 23
|
||||
1 40 18 66 83
|
||||
34 85 28 48 16
|
||||
15 93 38 96 27
|
||||
|
||||
74 50 88 84 99
|
||||
34 2 11 25 17
|
||||
57 4 19 83 1
|
||||
59 77 42 36 33
|
||||
73 22 23 37 55
|
||||
|
||||
98 91 56 84 78
|
||||
45 21 24 83 40
|
||||
46 58 8 67 4
|
||||
33 97 55 7 86
|
||||
2 68 64 27 69
|
||||
|
||||
68 29 14 49 26
|
||||
4 21 87 71 32
|
||||
58 5 17 46 93
|
||||
45 96 8 83 2
|
||||
78 91 9 20 42
|
||||
|
||||
49 81 19 48 37
|
||||
38 23 45 82 92
|
||||
93 99 67 66 42
|
||||
40 74 25 56 16
|
||||
21 47 26 75 61
|
||||
|
||||
53 66 72 30 34
|
||||
55 82 77 6 92
|
||||
60 56 8 22 88
|
||||
5 71 49 29 74
|
||||
28 2 32 84 73
|
||||
|
||||
52 31 24 68 41
|
||||
48 82 19 29 65
|
||||
51 91 97 39 80
|
||||
3 55 43 40 38
|
||||
20 89 53 45 75
|
||||
|
||||
29 74 19 89 18
|
||||
32 88 93 46 63
|
||||
91 4 94 64 5
|
||||
57 54 49 36 40
|
||||
97 81 39 77 1
|
||||
|
||||
7 57 94 84 39
|
||||
92 3 28 15 75
|
||||
88 45 65 81 63
|
||||
86 4 89 37 71
|
||||
8 13 66 42 85
|
||||
|
||||
60 66 35 47 98
|
||||
96 27 40 51 39
|
||||
3 64 25 28 74
|
||||
58 17 97 59 29
|
||||
95 31 18 44 37
|
||||
|
||||
3 31 97 85 71
|
||||
79 82 22 61 98
|
||||
87 14 17 66 75
|
||||
36 89 88 83 63
|
||||
44 8 81 25 48
|
||||
|
||||
73 84 28 90 94
|
||||
25 19 44 10 23
|
||||
8 59 17 9 93
|
||||
20 77 97 64 6
|
||||
98 82 27 70 91
|
||||
|
||||
18 51 16 99 2
|
||||
58 22 89 13 19
|
||||
39 66 91 8 32
|
||||
49 24 85 94 42
|
||||
45 70 10 86 4
|
||||
|
||||
23 81 66 13 34
|
||||
25 80 97 5 42
|
||||
79 35 2 78 9
|
||||
0 6 91 94 45
|
||||
21 90 76 50 56
|
||||
|
||||
50 92 2 96 75
|
||||
85 82 80 97 31
|
||||
61 35 55 27 56
|
||||
74 42 9 29 90
|
||||
86 15 88 47 1
|
||||
|
||||
18 20 54 92 62
|
||||
45 22 32 61 75
|
||||
1 38 50 81 42
|
||||
82 4 21 77 65
|
||||
27 51 56 39 48
|
||||
|
||||
36 10 62 28 70
|
||||
94 99 34 54 6
|
||||
15 1 41 13 12
|
||||
92 52 2 63 82
|
||||
90 64 29 69 32
|
||||
|
||||
23 77 33 90 17
|
||||
45 78 5 67 28
|
||||
57 73 89 81 21
|
||||
49 64 37 15 14
|
||||
7 59 4 43 16
|
||||
|
||||
81 92 25 28 90
|
||||
93 72 43 94 26
|
||||
24 9 13 74 10
|
||||
21 2 36 32 51
|
||||
87 97 55 86 71
|
||||
|
||||
82 71 99 17 90
|
||||
69 95 65 55 10
|
||||
9 92 39 62 78
|
||||
59 13 61 24 44
|
||||
8 31 58 0 57
|
||||
|
||||
17 83 55 99 27
|
||||
79 4 33 76 7
|
||||
81 43 44 49 72
|
||||
2 48 97 20 77
|
||||
47 60 35 16 63
|
||||
|
||||
93 95 94 1 98
|
||||
61 57 84 55 22
|
||||
85 40 65 46 59
|
||||
21 15 63 77 7
|
||||
13 99 49 3 96
|
||||
|
||||
8 21 14 45 41
|
||||
65 63 82 62 28
|
||||
91 44 22 79 96
|
||||
20 75 86 3 26
|
||||
74 11 42 59 36
|
||||
|
||||
5 52 43 92 99
|
||||
46 63 10 45 81
|
||||
13 66 21 32 89
|
||||
25 28 96 40 88
|
||||
27 18 31 73 34
|
||||
|
||||
3 26 43 32 36
|
||||
68 87 67 65 99
|
||||
73 61 20 90 7
|
||||
21 52 2 82 10
|
||||
58 49 56 16 80
|
||||
|
||||
97 25 93 63 32
|
||||
87 14 5 22 76
|
||||
89 92 91 3 51
|
||||
0 24 95 69 20
|
||||
96 11 10 1 55
|
||||
|
||||
95 86 44 75 70
|
||||
59 76 45 2 99
|
||||
1 34 71 81 41
|
||||
87 14 33 84 96
|
||||
8 38 9 82 68
|
||||
|
||||
27 71 70 75 76
|
||||
25 87 2 79 96
|
||||
20 88 50 37 32
|
||||
48 94 63 86 22
|
||||
15 6 34 78 59
|
||||
|
||||
30 89 51 31 77
|
||||
74 10 86 71 84
|
||||
29 54 58 44 5
|
||||
11 90 26 50 63
|
||||
64 62 20 40 46
|
||||
|
||||
37 9 46 23 31
|
||||
68 21 25 36 90
|
||||
17 33 6 50 30
|
||||
11 89 20 47 60
|
||||
26 59 34 62 77
|
||||
|
||||
84 52 40 97 7
|
||||
88 30 42 58 94
|
||||
64 10 2 90 83
|
||||
44 35 77 91 47
|
||||
14 74 9 78 53
|
||||
|
||||
86 14 0 39 24
|
||||
87 69 58 8 73
|
||||
88 74 27 40 51
|
||||
63 54 55 93 61
|
||||
16 66 15 21 48
|
||||
|
||||
43 70 9 81 42
|
||||
36 54 99 34 95
|
||||
98 19 90 25 44
|
||||
69 56 18 77 49
|
||||
58 16 67 75 57
|
||||
|
||||
36 44 14 98 23
|
||||
31 5 83 46 3
|
||||
45 21 41 11 60
|
||||
33 81 88 92 65
|
||||
13 51 48 59 71
|
||||
|
||||
12 5 70 87 32
|
||||
42 18 90 73 88
|
||||
68 29 76 38 55
|
||||
67 62 15 77 34
|
||||
39 27 51 54 19
|
||||
|
||||
87 8 92 93 88
|
||||
77 54 15 1 43
|
||||
35 97 26 21 29
|
||||
13 46 96 69 47
|
||||
51 38 91 32 63
|
||||
|
||||
73 99 30 15 16
|
||||
42 58 21 88 44
|
||||
45 13 27 68 9
|
||||
36 6 81 53 5
|
||||
78 76 11 60 1
|
||||
|
||||
57 76 50 78 31
|
||||
45 42 68 53 16
|
||||
9 88 89 19 21
|
||||
96 61 97 69 34
|
||||
98 87 33 82 0
|
||||
|
||||
4 16 89 57 64
|
||||
46 75 77 65 23
|
||||
71 42 96 52 38
|
||||
1 21 93 0 35
|
||||
59 80 53 36 58
|
||||
|
||||
97 62 35 1 88
|
||||
98 60 17 45 94
|
||||
12 43 65 23 19
|
||||
71 52 3 40 59
|
||||
50 76 61 20 22
|
||||
|
||||
92 65 38 93 13
|
||||
55 26 10 46 29
|
||||
85 23 19 74 34
|
||||
60 14 27 36 18
|
||||
53 4 52 49 17
|
||||
|
||||
99 56 93 70 28
|
||||
25 0 77 80 57
|
||||
91 50 72 76 23
|
||||
53 58 95 78 59
|
||||
75 85 90 44 9
|
||||
|
||||
30 8 5 60 6
|
||||
28 35 59 70 96
|
||||
20 99 98 81 79
|
||||
94 78 27 71 4
|
||||
7 34 43 46 51
|
||||
|
||||
93 65 22 69 33
|
||||
92 49 75 35 11
|
||||
58 39 62 86 83
|
||||
64 4 76 48 82
|
||||
74 1 56 95 31
|
||||
|
||||
1 78 98 90 55
|
||||
80 14 36 99 7
|
||||
85 8 10 9 92
|
||||
76 11 40 70 62
|
||||
43 53 74 35 58
|
||||
|
||||
46 78 35 28 49
|
||||
84 73 65 25 34
|
||||
40 59 66 36 67
|
||||
16 22 29 0 45
|
||||
20 56 39 88 91
|
||||
|
||||
32 58 35 25 79
|
||||
78 94 57 38 14
|
||||
89 87 68 48 76
|
||||
7 67 40 51 33
|
||||
95 31 43 93 92
|
||||
|
||||
38 21 82 31 23
|
||||
54 16 77 37 42
|
||||
73 99 7 34 90
|
||||
71 26 5 91 52
|
||||
22 27 47 85 62
|
||||
|
||||
2 86 28 37 55
|
||||
1 82 9 36 31
|
||||
52 98 89 30 60
|
||||
13 17 63 38 57
|
||||
73 50 42 20 12
|
||||
|
||||
56 3 67 62 35
|
||||
59 39 19 22 27
|
||||
21 58 57 41 54
|
||||
75 13 82 50 32
|
||||
23 5 99 66 10
|
||||
|
||||
7 19 45 66 78
|
||||
38 57 40 73 87
|
||||
58 30 99 53 83
|
||||
64 1 8 56 95
|
||||
70 77 16 18 82
|
||||
|
||||
72 83 95 37 35
|
||||
54 59 92 21 79
|
||||
7 81 86 29 41
|
||||
52 99 42 57 71
|
||||
3 15 75 34 77
|
||||
|
||||
7 70 5 69 4
|
||||
34 60 40 73 6
|
||||
74 54 67 32 38
|
||||
93 62 17 51 86
|
||||
57 88 99 3 16
|
||||
|
||||
42 74 11 34 7
|
||||
82 47 71 31 58
|
||||
69 23 43 4 64
|
||||
32 19 98 93 41
|
||||
63 97 8 85 48
|
||||
|
||||
63 54 34 38 86
|
||||
4 27 15 49 0
|
||||
61 77 53 98 74
|
||||
62 23 88 97 37
|
||||
93 28 25 50 13
|
||||
|
||||
56 82 41 27 79
|
||||
23 31 64 7 65
|
||||
52 98 93 16 57
|
||||
88 49 10 11 62
|
||||
43 95 53 51 83
|
||||
|
||||
41 10 87 54 86
|
||||
19 22 13 40 17
|
||||
37 27 45 29 63
|
||||
83 85 81 90 7
|
||||
57 88 47 66 56
|
||||
|
||||
67 44 54 88 89
|
||||
20 46 61 28 92
|
||||
86 49 60 83 95
|
||||
42 78 97 51 96
|
||||
11 62 4 26 31
|
||||
|
||||
18 68 87 26 70
|
||||
62 84 11 33 90
|
||||
0 45 66 83 6
|
||||
20 19 27 44 55
|
||||
52 8 5 7 3
|
||||
|
||||
54 94 88 76 92
|
||||
13 98 22 33 26
|
||||
95 62 53 81 24
|
||||
29 69 15 87 25
|
||||
61 40 84 90 93
|
||||
|
||||
7 31 3 28 46
|
||||
20 51 21 18 38
|
||||
30 92 39 70 61
|
||||
27 88 35 96 74
|
||||
23 5 66 11 42
|
||||
|
||||
40 61 90 57 54
|
||||
41 14 99 62 59
|
||||
92 10 48 81 52
|
||||
22 29 77 18 87
|
||||
31 79 25 94 13
|
||||
|
||||
17 26 44 98 57
|
||||
74 83 51 14 11
|
||||
76 91 96 64 33
|
||||
43 45 92 72 27
|
||||
66 3 28 20 40
|
||||
|
||||
88 82 44 71 55
|
||||
83 47 51 76 24
|
||||
86 19 42 34 99
|
||||
30 31 87 48 62
|
||||
98 53 68 9 21
|
||||
|
||||
3 31 6 41 61
|
||||
24 77 81 96 44
|
||||
78 73 1 98 11
|
||||
40 80 27 65 92
|
||||
62 67 2 30 10
|
||||
|
||||
78 46 50 65 56
|
||||
84 16 32 58 86
|
||||
22 12 54 99 35
|
||||
9 43 55 10 94
|
||||
66 81 59 92 76
|
||||
|
||||
78 3 55 23 83
|
||||
13 42 94 91 22
|
||||
14 37 31 67 71
|
||||
8 61 57 34 43
|
||||
74 50 0 39 65
|
||||
|
||||
78 16 13 91 34
|
||||
14 74 86 3 97
|
||||
12 89 58 65 51
|
||||
29 57 48 44 93
|
||||
95 1 42 39 92
|
||||
|
||||
93 96 16 85 25
|
||||
59 3 70 19 17
|
||||
21 84 58 38 86
|
||||
57 10 35 95 79
|
||||
81 44 73 63 9
|
||||
|
||||
22 1 96 7 93
|
||||
40 49 2 4 66
|
||||
87 21 17 32 48
|
||||
44 28 42 99 26
|
||||
69 8 85 86 75
|
||||
|
||||
21 31 37 87 28
|
||||
89 43 74 83 57
|
||||
95 29 92 88 35
|
||||
94 25 97 81 50
|
||||
15 19 73 45 63
|
||||
|
||||
92 62 67 95 57
|
||||
30 8 4 39 64
|
||||
99 31 70 63 96
|
||||
25 53 24 93 35
|
||||
34 51 82 91 28
|
||||
|
||||
41 30 20 56 46
|
||||
16 32 98 60 35
|
||||
67 9 43 42 88
|
||||
78 90 71 5 29
|
||||
49 31 37 63 18
|
||||
|
||||
80 40 88 5 62
|
||||
3 6 74 71 97
|
||||
19 58 63 59 38
|
||||
50 64 34 68 45
|
||||
25 30 21 33 83
|
||||
|
||||
10 65 67 17 50
|
||||
21 51 18 68 59
|
||||
29 78 77 99 76
|
||||
62 35 96 7 95
|
||||
82 53 42 49 69
|
||||
|
||||
74 65 89 6 1
|
||||
18 30 72 75 24
|
||||
60 50 52 55 82
|
||||
68 99 4 61 22
|
||||
9 37 84 57 87
|
||||
|
||||
96 85 56 72 2
|
||||
9 38 98 12 4
|
||||
34 45 74 97 86
|
||||
18 94 64 70 68
|
||||
91 41 58 39 66
|
||||
|
||||
34 13 26 80 29
|
||||
0 4 21 60 90
|
||||
39 73 12 2 19
|
||||
64 44 61 88 45
|
||||
59 50 8 91 49
|
||||
|
||||
34 85 55 2 75
|
||||
10 15 89 12 63
|
||||
90 29 87 73 71
|
||||
38 17 84 45 9
|
||||
97 98 77 23 61
|
||||
|
||||
47 43 22 58 1
|
||||
63 44 2 94 99
|
||||
33 81 51 49 13
|
||||
38 86 42 91 23
|
||||
7 67 68 39 84
|
||||
|
||||
4 26 12 38 41
|
||||
43 16 88 71 99
|
||||
50 24 19 77 98
|
||||
23 73 44 10 51
|
||||
56 42 30 52 59
|
||||
|
||||
57 16 9 62 27
|
||||
26 65 56 10 82
|
||||
0 74 78 12 99
|
||||
77 18 38 5 37
|
||||
7 60 40 90 23
|
||||
|
||||
14 69 18 51 8
|
||||
21 79 60 36 12
|
||||
68 44 59 45 16
|
||||
90 50 85 25 70
|
||||
91 31 30 54 26
|
||||
|
||||
24 40 51 72 63
|
||||
31 60 62 25 96
|
||||
9 44 35 28 91
|
||||
97 4 34 81 2
|
||||
61 68 94 52 86
|
||||
|
||||
0 57 95 88 94
|
||||
36 38 25 35 19
|
||||
13 6 8 61 98
|
||||
45 85 86 69 97
|
||||
41 32 7 15 59
|
||||
|
||||
41 82 19 29 34
|
||||
44 96 6 91 76
|
||||
69 21 32 94 98
|
||||
4 10 88 30 2
|
||||
8 74 56 65 99
|
||||
|
||||
36 91 73 15 54
|
||||
62 55 40 27 44
|
||||
11 60 95 61 46
|
||||
31 32 21 41 35
|
||||
74 86 83 89 79
|
||||
|
||||
2 96 94 82 68
|
||||
39 83 49 30 15
|
||||
62 11 86 99 59
|
||||
51 80 12 72 58
|
||||
87 66 98 53 29
|
||||
|
||||
44 71 18 63 85
|
||||
11 75 60 66 13
|
||||
36 9 94 57 8
|
||||
10 12 32 3 86
|
||||
4 29 54 70 21
|
||||
|
||||
27 33 76 83 67
|
||||
77 29 65 39 44
|
||||
52 34 25 93 64
|
||||
35 4 57 92 84
|
||||
41 51 88 96 0
|
||||
|
||||
21 91 82 3 26
|
||||
23 8 36 20 73
|
||||
54 39 60 34 57
|
||||
49 99 97 69 43
|
||||
41 93 95 80 63
|
||||
|
||||
73 77 4 9 22
|
||||
17 33 15 86 79
|
||||
38 16 99 98 30
|
||||
64 92 76 50 68
|
||||
83 85 52 87 88
|
||||
|
||||
57 53 13 36 76
|
||||
7 10 91 3 22
|
||||
8 84 56 73 59
|
||||
62 80 85 38 33
|
||||
68 97 47 14 96
|
||||
|
||||
36 8 98 43 70
|
||||
85 95 31 1 51
|
||||
33 41 78 89 56
|
||||
76 16 15 34 82
|
||||
12 18 39 4 3
|
||||
|
||||
98 49 41 30 95
|
||||
68 89 81 48 84
|
||||
15 19 90 66 14
|
||||
32 1 88 34 64
|
||||
73 65 6 20 86
|
||||
|
||||
22 18 13 74 34
|
||||
75 4 60 88 46
|
||||
25 97 54 94 91
|
||||
42 67 40 11 81
|
||||
5 12 49 48 15
|
||||
|
||||
82 91 18 73 57
|
||||
97 50 34 16 66
|
||||
29 43 81 20 15
|
||||
19 44 85 4 32
|
||||
90 58 39 53 42
|
||||
|
||||
50 53 83 10 0
|
||||
93 16 84 23 13
|
||||
89 63 75 69 51
|
||||
65 35 67 56 70
|
||||
4 37 29 47 38
|
@ -0,0 +1,38 @@
|
||||
#lang br
|
||||
(require racket/file sugar rackunit racket/set)
|
||||
|
||||
(define lines (map (λ (s) (map (λ (s2) (define ints (map string->number (string-split s2 ",")))
|
||||
(+ (first ints) (* +i (second ints)))) (string-split s " -> "))) (file->lines "05.rktd")))
|
||||
|
||||
(define (Line-not-diagonal line)
|
||||
(match line
|
||||
[(list left right) (or (= (real-part left) (real-part right)) (= (imag-part left) (imag-part right)))]))
|
||||
|
||||
;; why does make-polar cause the solution to run faster?
|
||||
;; both functions create an imaginary number
|
||||
;; make-polar is slower to create the numbers (because it has to call trig functions)
|
||||
;; but storing the polar numbers with frequency-hash is much faster
|
||||
;; using inexact coefficients makes make-rectangular go faster
|
||||
;; but still not as fast as make-polar
|
||||
(define go-fast? #true)
|
||||
(define imag-func (if go-fast? make-polar make-rectangular))
|
||||
|
||||
(define (expand line)
|
||||
(match-define (list x1 x2) (map real-part line))
|
||||
(match-define (list y1 y2) (map imag-part line))
|
||||
(cond
|
||||
[(= x1 x2)
|
||||
(for/list ([i (in-range (apply min (list y1 y2)) (add1 (apply max (list y1 y2))))])
|
||||
(imag-func x1 i))]
|
||||
[(= y1 y2)
|
||||
(for/list ([i (in-range (apply min (list x1 x2)) (add1 (apply max (list x1 x2))))])
|
||||
(imag-func i y1))]
|
||||
[else (for/list ([x (in-range x1 ((if (> x1 x2) sub1 add1) x2) (if (> x1 x2) -1 1))]
|
||||
[y (in-range y1 ((if (> y1 y2) sub1 add1) y2) (if (> y1 y2) -1 1))])
|
||||
(imag-func x y))]))
|
||||
|
||||
(define (calc-result points)
|
||||
(length (filter (λ (x) (>= x 2)) (hash-values (time (frequency-hash points))))))
|
||||
|
||||
(check-equal? (calc-result (append-map expand (filter Line-not-diagonal lines))) 6113)
|
||||
(check-equal? (calc-result (append-map expand lines)) 20373)
|
@ -0,0 +1,500 @@
|
||||
309,347 -> 309,464
|
||||
425,687 -> 300,687
|
||||
226,766 -> 885,107
|
||||
681,618 -> 921,378
|
||||
968,54 -> 38,984
|
||||
35,341 -> 321,627
|
||||
493,485 -> 632,485
|
||||
908,183 -> 110,981
|
||||
677,378 -> 677,231
|
||||
703,378 -> 703,536
|
||||
179,581 -> 429,331
|
||||
339,133 -> 664,458
|
||||
212,680 -> 212,136
|
||||
251,699 -> 858,699
|
||||
163,725 -> 163,22
|
||||
70,226 -> 97,226
|
||||
968,119 -> 954,119
|
||||
551,551 -> 415,551
|
||||
768,167 -> 546,167
|
||||
125,302 -> 155,332
|
||||
640,201 -> 341,201
|
||||
757,791 -> 757,736
|
||||
406,570 -> 418,558
|
||||
250,919 -> 976,193
|
||||
570,362 -> 304,96
|
||||
463,973 -> 463,337
|
||||
322,199 -> 322,73
|
||||
141,186 -> 141,906
|
||||
964,940 -> 964,743
|
||||
99,461 -> 15,461
|
||||
255,856 -> 255,194
|
||||
650,293 -> 650,136
|
||||
89,98 -> 969,978
|
||||
974,977 -> 37,40
|
||||
641,795 -> 985,795
|
||||
441,972 -> 441,427
|
||||
18,942 -> 943,17
|
||||
166,167 -> 617,167
|
||||
182,146 -> 790,146
|
||||
88,854 -> 928,14
|
||||
537,38 -> 233,38
|
||||
786,562 -> 867,562
|
||||
251,102 -> 147,102
|
||||
551,373 -> 672,252
|
||||
915,713 -> 791,589
|
||||
28,373 -> 28,651
|
||||
463,365 -> 396,365
|
||||
349,948 -> 737,948
|
||||
246,860 -> 84,860
|
||||
334,817 -> 866,285
|
||||
880,958 -> 641,719
|
||||
229,203 -> 740,714
|
||||
39,220 -> 575,756
|
||||
899,383 -> 275,383
|
||||
49,952 -> 774,952
|
||||
384,42 -> 581,42
|
||||
11,731 -> 522,731
|
||||
194,638 -> 679,153
|
||||
922,279 -> 922,398
|
||||
589,579 -> 709,579
|
||||
97,716 -> 244,716
|
||||
769,923 -> 769,189
|
||||
636,567 -> 866,337
|
||||
413,925 -> 729,925
|
||||
581,524 -> 89,32
|
||||
970,217 -> 851,217
|
||||
716,373 -> 122,967
|
||||
606,785 -> 191,785
|
||||
322,432 -> 706,432
|
||||
788,911 -> 788,889
|
||||
904,917 -> 904,862
|
||||
889,351 -> 796,351
|
||||
508,18 -> 508,165
|
||||
859,187 -> 879,187
|
||||
531,409 -> 562,378
|
||||
914,97 -> 233,778
|
||||
194,191 -> 194,592
|
||||
620,674 -> 55,109
|
||||
194,973 -> 863,973
|
||||
679,940 -> 679,296
|
||||
836,108 -> 700,108
|
||||
861,376 -> 585,376
|
||||
166,299 -> 166,141
|
||||
847,377 -> 847,217
|
||||
872,972 -> 872,413
|
||||
28,872 -> 28,695
|
||||
876,152 -> 108,920
|
||||
487,536 -> 697,536
|
||||
30,28 -> 982,980
|
||||
834,503 -> 834,586
|
||||
927,459 -> 339,459
|
||||
87,809 -> 770,126
|
||||
24,973 -> 981,16
|
||||
185,383 -> 185,13
|
||||
850,328 -> 541,19
|
||||
399,111 -> 742,111
|
||||
703,305 -> 458,305
|
||||
571,889 -> 803,657
|
||||
356,697 -> 364,697
|
||||
847,160 -> 108,899
|
||||
170,954 -> 137,954
|
||||
927,120 -> 897,150
|
||||
687,662 -> 507,662
|
||||
762,259 -> 762,951
|
||||
90,612 -> 647,55
|
||||
114,437 -> 483,68
|
||||
138,269 -> 638,269
|
||||
720,947 -> 29,947
|
||||
563,52 -> 360,52
|
||||
665,953 -> 187,475
|
||||
283,855 -> 283,744
|
||||
120,284 -> 120,319
|
||||
935,422 -> 349,422
|
||||
372,858 -> 372,779
|
||||
68,768 -> 814,22
|
||||
206,400 -> 22,400
|
||||
72,954 -> 977,49
|
||||
861,557 -> 794,557
|
||||
893,654 -> 893,132
|
||||
306,364 -> 697,364
|
||||
828,165 -> 695,165
|
||||
122,57 -> 986,921
|
||||
509,470 -> 608,470
|
||||
794,730 -> 520,456
|
||||
291,305 -> 525,71
|
||||
648,530 -> 92,530
|
||||
329,173 -> 329,343
|
||||
960,941 -> 133,114
|
||||
256,523 -> 369,523
|
||||
433,379 -> 195,379
|
||||
199,783 -> 821,783
|
||||
974,205 -> 299,205
|
||||
200,400 -> 27,573
|
||||
294,175 -> 294,493
|
||||
320,20 -> 320,393
|
||||
274,85 -> 969,780
|
||||
112,73 -> 112,969
|
||||
371,381 -> 121,631
|
||||
942,906 -> 46,906
|
||||
663,742 -> 208,287
|
||||
422,258 -> 422,356
|
||||
884,283 -> 859,283
|
||||
750,142 -> 710,142
|
||||
823,454 -> 642,273
|
||||
296,366 -> 296,245
|
||||
518,615 -> 852,949
|
||||
74,513 -> 655,513
|
||||
850,77 -> 850,950
|
||||
985,980 -> 33,28
|
||||
16,982 -> 979,19
|
||||
265,234 -> 849,234
|
||||
303,408 -> 229,334
|
||||
344,63 -> 932,651
|
||||
417,597 -> 548,597
|
||||
729,361 -> 245,845
|
||||
888,156 -> 80,964
|
||||
215,29 -> 411,225
|
||||
762,108 -> 115,108
|
||||
63,855 -> 875,43
|
||||
398,382 -> 874,858
|
||||
419,78 -> 419,417
|
||||
263,553 -> 131,553
|
||||
766,399 -> 584,399
|
||||
778,126 -> 226,678
|
||||
580,781 -> 580,401
|
||||
623,506 -> 966,506
|
||||
364,723 -> 364,349
|
||||
834,667 -> 177,10
|
||||
402,515 -> 402,493
|
||||
924,50 -> 22,952
|
||||
64,826 -> 64,470
|
||||
199,694 -> 145,694
|
||||
893,900 -> 20,27
|
||||
850,834 -> 725,959
|
||||
47,573 -> 575,45
|
||||
71,287 -> 71,296
|
||||
796,728 -> 796,442
|
||||
88,700 -> 726,700
|
||||
230,332 -> 412,514
|
||||
618,284 -> 618,661
|
||||
221,738 -> 817,142
|
||||
149,38 -> 474,38
|
||||
563,331 -> 441,331
|
||||
219,187 -> 522,187
|
||||
300,341 -> 300,633
|
||||
228,305 -> 70,463
|
||||
396,875 -> 22,875
|
||||
533,116 -> 519,116
|
||||
257,781 -> 257,443
|
||||
181,236 -> 181,822
|
||||
10,13 -> 986,989
|
||||
59,290 -> 753,984
|
||||
121,89 -> 121,827
|
||||
958,233 -> 653,233
|
||||
685,641 -> 685,322
|
||||
167,124 -> 446,403
|
||||
246,170 -> 77,339
|
||||
503,189 -> 503,72
|
||||
666,182 -> 824,340
|
||||
825,675 -> 629,479
|
||||
967,915 -> 967,785
|
||||
749,403 -> 92,403
|
||||
950,217 -> 950,391
|
||||
356,872 -> 514,872
|
||||
279,900 -> 138,900
|
||||
114,284 -> 502,672
|
||||
700,792 -> 32,124
|
||||
252,783 -> 806,229
|
||||
557,215 -> 557,103
|
||||
35,29 -> 963,957
|
||||
650,285 -> 23,912
|
||||
669,191 -> 446,414
|
||||
66,283 -> 66,37
|
||||
564,250 -> 175,250
|
||||
425,611 -> 425,964
|
||||
662,224 -> 707,224
|
||||
599,979 -> 599,873
|
||||
402,886 -> 402,979
|
||||
329,181 -> 329,964
|
||||
120,891 -> 685,326
|
||||
788,438 -> 788,460
|
||||
140,939 -> 338,939
|
||||
496,343 -> 327,343
|
||||
749,151 -> 749,339
|
||||
181,527 -> 181,455
|
||||
61,949 -> 966,44
|
||||
138,262 -> 894,262
|
||||
192,146 -> 801,146
|
||||
301,405 -> 765,405
|
||||
938,235 -> 938,55
|
||||
543,958 -> 320,958
|
||||
54,982 -> 867,169
|
||||
66,147 -> 702,783
|
||||
839,419 -> 97,419
|
||||
519,879 -> 519,707
|
||||
159,255 -> 159,787
|
||||
258,897 -> 968,897
|
||||
427,10 -> 427,62
|
||||
782,750 -> 782,960
|
||||
878,742 -> 785,649
|
||||
171,74 -> 883,74
|
||||
220,184 -> 910,874
|
||||
696,984 -> 696,512
|
||||
175,753 -> 303,753
|
||||
666,515 -> 45,515
|
||||
886,101 -> 14,973
|
||||
121,823 -> 154,823
|
||||
63,976 -> 987,52
|
||||
480,478 -> 167,791
|
||||
757,338 -> 757,719
|
||||
593,286 -> 542,286
|
||||
989,602 -> 989,135
|
||||
793,857 -> 712,857
|
||||
65,976 -> 843,198
|
||||
729,334 -> 106,957
|
||||
102,234 -> 42,294
|
||||
830,223 -> 267,223
|
||||
800,590 -> 921,590
|
||||
526,38 -> 863,38
|
||||
770,719 -> 65,14
|
||||
317,267 -> 541,267
|
||||
653,697 -> 653,720
|
||||
506,532 -> 483,555
|
||||
564,387 -> 205,387
|
||||
971,669 -> 971,966
|
||||
421,905 -> 421,264
|
||||
506,85 -> 407,85
|
||||
435,863 -> 230,863
|
||||
945,133 -> 694,133
|
||||
604,921 -> 604,168
|
||||
66,677 -> 499,244
|
||||
300,551 -> 893,551
|
||||
836,228 -> 836,631
|
||||
29,208 -> 443,208
|
||||
546,584 -> 148,584
|
||||
855,904 -> 855,315
|
||||
636,694 -> 852,478
|
||||
399,252 -> 399,170
|
||||
46,596 -> 46,789
|
||||
919,211 -> 201,929
|
||||
662,983 -> 545,866
|
||||
22,913 -> 908,27
|
||||
441,605 -> 94,952
|
||||
190,257 -> 769,836
|
||||
700,395 -> 861,556
|
||||
562,620 -> 562,687
|
||||
34,165 -> 603,734
|
||||
372,302 -> 585,302
|
||||
71,857 -> 588,340
|
||||
956,566 -> 738,784
|
||||
778,610 -> 74,610
|
||||
331,640 -> 346,655
|
||||
274,473 -> 274,691
|
||||
646,142 -> 144,142
|
||||
911,971 -> 618,971
|
||||
233,341 -> 233,505
|
||||
467,990 -> 41,990
|
||||
633,739 -> 57,163
|
||||
585,405 -> 905,405
|
||||
320,449 -> 320,628
|
||||
44,738 -> 44,293
|
||||
67,267 -> 770,970
|
||||
933,155 -> 765,323
|
||||
383,879 -> 896,366
|
||||
130,986 -> 435,986
|
||||
264,863 -> 979,148
|
||||
114,721 -> 725,110
|
||||
546,949 -> 546,790
|
||||
762,42 -> 67,42
|
||||
443,985 -> 245,985
|
||||
689,803 -> 126,803
|
||||
496,702 -> 943,255
|
||||
955,963 -> 117,125
|
||||
686,411 -> 979,704
|
||||
226,256 -> 226,352
|
||||
889,683 -> 889,437
|
||||
47,161 -> 545,161
|
||||
450,283 -> 450,469
|
||||
461,338 -> 461,695
|
||||
808,777 -> 808,962
|
||||
902,459 -> 902,744
|
||||
793,703 -> 158,68
|
||||
100,919 -> 69,919
|
||||
912,785 -> 331,204
|
||||
712,609 -> 712,512
|
||||
268,762 -> 268,355
|
||||
972,667 -> 974,667
|
||||
647,647 -> 164,647
|
||||
589,180 -> 589,644
|
||||
836,258 -> 376,718
|
||||
676,977 -> 211,977
|
||||
626,608 -> 874,360
|
||||
271,911 -> 324,858
|
||||
182,374 -> 182,347
|
||||
14,989 -> 985,18
|
||||
461,462 -> 956,957
|
||||
82,79 -> 974,971
|
||||
607,478 -> 607,147
|
||||
898,76 -> 582,392
|
||||
326,31 -> 683,31
|
||||
768,47 -> 768,348
|
||||
35,386 -> 185,386
|
||||
803,391 -> 803,932
|
||||
879,486 -> 879,658
|
||||
183,39 -> 183,855
|
||||
431,467 -> 499,399
|
||||
434,306 -> 304,436
|
||||
774,618 -> 521,618
|
||||
364,426 -> 364,457
|
||||
44,849 -> 791,102
|
||||
70,850 -> 276,850
|
||||
181,838 -> 181,736
|
||||
574,18 -> 574,784
|
||||
103,613 -> 537,179
|
||||
34,218 -> 115,299
|
||||
808,777 -> 636,777
|
||||
483,112 -> 483,939
|
||||
15,790 -> 15,253
|
||||
433,427 -> 742,427
|
||||
829,947 -> 895,947
|
||||
361,180 -> 860,180
|
||||
124,499 -> 124,615
|
||||
879,712 -> 745,712
|
||||
16,12 -> 16,149
|
||||
36,981 -> 36,561
|
||||
929,52 -> 30,951
|
||||
845,85 -> 318,612
|
||||
114,731 -> 794,51
|
||||
434,280 -> 406,308
|
||||
530,513 -> 114,513
|
||||
417,715 -> 417,273
|
||||
44,845 -> 44,225
|
||||
951,122 -> 450,623
|
||||
32,707 -> 32,832
|
||||
51,58 -> 51,806
|
||||
165,305 -> 49,189
|
||||
517,221 -> 942,221
|
||||
125,233 -> 193,233
|
||||
903,180 -> 101,982
|
||||
123,303 -> 247,179
|
||||
199,174 -> 546,521
|
||||
185,860 -> 538,860
|
||||
825,751 -> 825,784
|
||||
454,720 -> 64,720
|
||||
28,10 -> 974,956
|
||||
626,760 -> 586,760
|
||||
91,234 -> 10,234
|
||||
973,939 -> 65,31
|
||||
589,308 -> 255,308
|
||||
547,945 -> 239,945
|
||||
909,914 -> 111,116
|
||||
484,182 -> 253,182
|
||||
145,575 -> 339,575
|
||||
215,143 -> 611,143
|
||||
963,983 -> 20,40
|
||||
220,733 -> 333,846
|
||||
126,860 -> 940,46
|
||||
715,823 -> 715,284
|
||||
832,65 -> 436,65
|
||||
923,496 -> 530,889
|
||||
708,517 -> 708,764
|
||||
154,681 -> 22,549
|
||||
909,135 -> 57,987
|
||||
225,966 -> 225,941
|
||||
629,491 -> 629,17
|
||||
927,349 -> 72,349
|
||||
15,987 -> 983,19
|
||||
265,912 -> 74,912
|
||||
14,985 -> 988,11
|
||||
986,64 -> 129,921
|
||||
697,831 -> 943,831
|
||||
379,143 -> 853,617
|
||||
232,887 -> 623,887
|
||||
947,473 -> 947,453
|
||||
898,762 -> 218,762
|
||||
599,386 -> 870,386
|
||||
757,137 -> 757,496
|
||||
437,285 -> 437,326
|
||||
515,311 -> 515,63
|
||||
305,703 -> 720,703
|
||||
321,770 -> 88,537
|
||||
75,48 -> 457,430
|
||||
38,499 -> 38,544
|
||||
481,896 -> 481,944
|
||||
614,483 -> 437,483
|
||||
647,430 -> 368,430
|
||||
641,669 -> 641,691
|
||||
849,626 -> 427,204
|
||||
805,688 -> 805,536
|
||||
102,315 -> 102,108
|
||||
729,525 -> 770,525
|
||||
234,702 -> 38,702
|
||||
17,457 -> 526,457
|
||||
369,155 -> 369,647
|
||||
216,118 -> 216,43
|
||||
342,384 -> 342,905
|
||||
470,832 -> 314,676
|
||||
179,318 -> 179,315
|
||||
40,707 -> 547,707
|
||||
771,236 -> 453,236
|
||||
113,823 -> 826,110
|
||||
731,642 -> 707,642
|
||||
36,398 -> 810,398
|
||||
233,447 -> 979,447
|
||||
74,286 -> 907,286
|
||||
939,223 -> 939,10
|
||||
866,57 -> 866,656
|
||||
978,20 -> 10,988
|
||||
816,176 -> 50,942
|
||||
293,868 -> 293,350
|
||||
900,159 -> 148,911
|
||||
58,84 -> 644,84
|
||||
720,416 -> 720,906
|
||||
935,31 -> 13,953
|
||||
41,727 -> 221,727
|
||||
633,112 -> 633,695
|
||||
418,947 -> 418,574
|
||||
632,711 -> 791,711
|
||||
73,228 -> 73,861
|
||||
59,447 -> 83,447
|
||||
418,938 -> 418,638
|
||||
922,352 -> 636,352
|
||||
66,773 -> 66,868
|
||||
69,678 -> 600,147
|
||||
333,251 -> 298,251
|
||||
371,803 -> 740,434
|
||||
976,972 -> 976,165
|
||||
896,415 -> 240,415
|
||||
672,476 -> 860,476
|
||||
202,291 -> 195,291
|
||||
99,971 -> 518,552
|
||||
284,858 -> 910,232
|
||||
187,282 -> 187,627
|
||||
157,445 -> 157,665
|
||||
421,879 -> 38,496
|
||||
155,431 -> 405,431
|
||||
772,472 -> 315,929
|
||||
69,818 -> 132,818
|
||||
70,328 -> 70,800
|
||||
471,788 -> 646,788
|
||||
960,900 -> 97,37
|
||||
258,566 -> 186,494
|
||||
345,413 -> 306,413
|
||||
897,173 -> 897,896
|
||||
74,740 -> 74,795
|
||||
679,238 -> 679,811
|
||||
870,64 -> 64,870
|
||||
30,869 -> 288,869
|
||||
539,380 -> 539,862
|
||||
452,692 -> 748,692
|
||||
527,712 -> 527,139
|
||||
725,504 -> 717,504
|
||||
201,338 -> 636,338
|
||||
626,719 -> 626,302
|
||||
580,153 -> 274,459
|
||||
654,215 -> 246,215
|
||||
363,738 -> 363,192
|
||||
335,502 -> 970,502
|
||||
266,52 -> 266,442
|
||||
125,127 -> 281,127
|
@ -0,0 +1,18 @@
|
||||
#lang br
|
||||
(require racket/file sugar rackunit)
|
||||
|
||||
(define fish (map string->number (string-split (file->string "06.rktd") ",")))
|
||||
|
||||
(define (simulate fish days)
|
||||
(for/fold ([freqs (frequency-hash fish)]
|
||||
#:result (apply + (hash-values freqs)))
|
||||
([d (in-range days)])
|
||||
(hash-set*
|
||||
(for/hasheq ([(k v) (in-hash freqs)]
|
||||
#:unless (zero? k))
|
||||
(values (sub1 k) v))
|
||||
6 (+ (hash-ref freqs 7 0) (hash-ref freqs 0 0))
|
||||
8 (hash-ref freqs 0 0))))
|
||||
|
||||
(check-equal? (simulate fish 80) 361169)
|
||||
(check-equal? (simulate fish 256) 1634946868992)
|
@ -0,0 +1 @@
|
||||
1,1,3,5,3,1,1,4,1,1,5,2,4,3,1,1,3,1,1,5,5,1,3,2,5,4,1,1,5,1,4,2,1,4,2,1,4,4,1,5,1,4,4,1,1,5,1,5,1,5,1,1,1,5,1,2,5,1,1,3,2,2,2,1,4,1,1,2,4,1,3,1,2,1,3,5,2,3,5,1,1,4,3,3,5,1,5,3,1,2,3,4,1,1,5,4,1,3,4,4,1,2,4,4,1,1,3,5,3,1,2,2,5,1,4,1,3,3,3,3,1,1,2,1,5,3,4,5,1,5,2,5,3,2,1,4,2,1,1,1,4,1,2,1,2,2,4,5,5,5,4,1,4,1,4,2,3,2,3,1,1,2,3,1,1,1,5,2,2,5,3,1,4,1,2,1,1,5,3,1,4,5,1,4,2,1,1,5,1,5,4,1,5,5,2,3,1,3,5,1,1,1,1,3,1,1,4,1,5,2,1,1,3,5,1,1,4,2,1,2,5,2,5,1,1,1,2,3,5,5,1,4,3,2,2,3,2,1,1,4,1,3,5,2,3,1,1,5,1,3,5,1,1,5,5,3,1,3,3,1,2,3,1,5,1,3,2,1,3,1,1,2,3,5,3,5,5,4,3,1,5,1,1,2,3,2,2,1,1,2,1,4,1,2,3,3,3,1,3,5
|
@ -0,0 +1,13 @@
|
||||
#lang br
|
||||
(require racket/file sugar rackunit)
|
||||
|
||||
(define posns (map string->number (string-split (file->string "07.rktd") ",")))
|
||||
|
||||
(define/caching (gauss-summation x) (* (/ x 2) (+ x 1)))
|
||||
|
||||
(define (fuel-cost alignment [post-proc values])
|
||||
(foldl (λ (posn res) (+ res (post-proc (abs (- alignment posn))))) 0 posns))
|
||||
|
||||
(define possible-alignments (remove-duplicates posns))
|
||||
(check-equal? (apply min (map fuel-cost possible-alignments)) 349357)
|
||||
(check-equal? (apply min (map (λ (pa) (fuel-cost pa gauss-summation)) possible-alignments)) 96708205)
|
@ -0,0 +1 @@
|
||||
1101,1,29,67,1102,0,1,65,1008,65,35,66,1005,66,28,1,67,65,20,4,0,1001,65,1,65,1106,0,8,99,35,67,101,99,105,32,110,39,101,115,116,32,112,97,115,32,117,110,101,32,105,110,116,99,111,100,101,32,112,114,111,103,114,97,109,10,33,133,43,1060,890,12,15,136,42,25,96,694,522,893,204,204,1168,311,1046,1699,26,399,299,66,644,402,65,480,711,72,894,244,249,337,331,774,126,23,484,1299,662,404,235,86,1492,556,73,478,210,82,433,597,154,130,178,491,578,856,532,1191,544,256,831,252,1001,109,37,1290,317,376,22,742,496,930,118,28,376,73,247,942,895,38,675,138,387,203,271,104,65,1099,981,167,67,57,607,1095,202,225,1067,1757,324,127,785,266,518,135,914,1006,1402,578,28,548,211,673,302,525,208,115,92,514,518,71,1298,796,780,166,1341,475,273,101,1155,838,1219,901,727,497,168,543,416,174,31,755,865,106,358,236,186,369,550,465,617,375,535,1639,513,419,1377,1024,704,77,38,0,149,5,28,1163,149,1654,614,1201,89,1141,844,1390,1081,132,1385,52,1027,80,572,377,340,39,630,875,692,289,339,358,68,205,54,149,41,1208,1528,171,204,438,571,308,556,1372,426,204,18,31,51,40,287,1845,1721,441,240,875,901,328,800,341,59,530,134,275,11,7,7,1,1571,218,374,536,992,464,234,398,300,74,99,1163,1039,430,43,659,667,1115,407,257,717,657,249,46,109,734,67,1010,581,1070,738,478,621,183,224,1372,560,1573,1026,338,485,1138,1007,910,16,846,556,423,200,962,103,570,540,900,839,319,171,14,22,205,225,569,81,381,132,127,139,123,788,1571,35,830,65,677,1745,819,804,854,346,190,480,1500,76,1049,306,17,668,113,163,755,1015,718,1037,156,267,158,74,377,26,294,203,334,1186,88,384,853,404,290,135,620,668,234,1158,2,1102,137,884,287,15,638,1003,187,24,534,24,647,683,934,275,1844,887,1746,1614,1788,632,100,332,1565,1352,341,1027,475,958,289,1564,89,1138,233,535,790,990,863,889,45,44,169,251,522,11,41,104,45,828,1206,1515,645,39,544,382,1413,995,188,310,51,39,474,14,7,1387,809,428,77,8,867,1105,718,426,146,486,191,1251,677,1139,802,585,1140,46,39,128,867,49,33,198,731,349,661,296,103,22,444,1198,1149,188,245,492,1147,230,213,300,551,295,1313,365,975,587,1416,1213,233,257,631,564,876,434,1353,51,748,1179,1428,915,115,57,90,1312,892,200,1349,35,1010,445,619,1261,108,14,1424,481,381,209,154,23,972,646,593,6,289,171,543,97,28,401,290,298,14,37,1326,1177,533,67,75,294,328,527,449,455,176,345,226,729,210,55,45,0,834,887,123,1326,931,278,449,1278,608,217,411,143,447,16,1043,29,165,88,860,582,21,811,920,162,1788,15,423,1172,842,801,845,20,155,155,642,40,1036,560,348,689,328,505,84,1013,58,93,1653,233,233,383,380,84,617,1128,305,123,508,205,6,322,118,359,1186,84,677,640,80,1357,868,1035,8,64,995,1246,266,443,346,112,523,625,206,66,565,1878,25,1277,936,283,148,987,282,368,883,542,631,946,118,53,4,235,16,950,4,998,106,25,151,1013,27,1038,77,140,82,1119,236,125,947,1446,680,301,301,936,21,609,516,280,264,281,108,43,215,36,126,401,402,693,360,321,92,1809,305,551,86,77,278,81,524,400,1458,1342,897,49,35,518,288,655,91,398,38,251,647,79,400,151,520,459,960,425,663,298,584,90,533,690,610,755,56,19,21,244,548,1116,773,43,115,171,1127,103,1199,1470,176,451,693,65,186,262,963,137,1422,431,533,210,799,17,388,600,1113,2,181,815,1153,6,618,590,719,196,39,301,424,193,560,175,351,279,603,171,423,146,158,48,398,513,115,1,1051,817,200,473,143,261,435,856,1057,503,51,846,1020,177,1091,232,500,372,475,70,485,1227,1032,64,743,299,159,1077,18,204,944,1075,29,78,63,67,9,1007,354,1046,491,448,206,222,121,955,290,381,147,146,104,576,722,163,715,1475,130,1104,586,97,352,173,713,315,1482,1221,38,10,81,457,745,323,47,197,1012,1593,128,463,373,272,90,121,1248,1451,540,681,63,950,19,208,230,1362,1225,1500,207,81,739,288,626,261,1188,356,889,408,3,368,94,858,1512,834,43,5,833,826,33,791,800,39,299,1587,41,783,498,899,296,1189,470,66,307,892,47,207,199,902,17,14,1831,11,576,729,1436,153,142,81,165,214,1543,1464,561,737,180,162,515,867,65,74,200,9,11,539,19,305,996,334,297,1825,427,169,225,53,688,420,623,111,313,324,5,376,433,135,308,94
|
@ -0,0 +1,71 @@
|
||||
#lang br
|
||||
(require racket/file rackunit racket/dict)
|
||||
|
||||
(define (parse-ints strs) (map (λ (str) (string-split str)) strs))
|
||||
|
||||
(define recs
|
||||
(let* ([lines (string-split (file->string "08.rktd") "\n")]
|
||||
[sublines (map (λ (str) (string-split str "|")) lines)])
|
||||
(map parse-ints sublines)))
|
||||
|
||||
(define strlens (append-map (λ (vals) (map string-length vals)) (map second recs)))
|
||||
(check-equal? (count (λ (len) (memq len '(2 3 4 7))) strlens) 278)
|
||||
|
||||
(require csp racket/set)
|
||||
|
||||
(define (infer-config #:one one-digit #:four four-digit #:seven seven-digit #:five five-segment-digits)
|
||||
(define prob (make-csp))
|
||||
(add-vars! prob '(s1 s2 s3 s4 s5 s6 s7) '(a b c d e f g))
|
||||
(add-all-diff-constraint! prob #:same eq?)
|
||||
(add-constraint! prob (λ (s3 s6) (equal? (set s3 s6) one-digit)) '(s3 s6))
|
||||
(add-constraint! prob
|
||||
(λ (s1 s2 s3 s4 s5 s6 s7)
|
||||
(define two-pattern (set s1 s3 s4 s5 s7))
|
||||
(define three-pattern (set s1 s3 s4 s6 s7))
|
||||
(define five-pattern (set s1 s2 s4 s6 s7))
|
||||
(for/and ([pat (list two-pattern three-pattern five-pattern)])
|
||||
(member pat five-segment-digits)))
|
||||
'(s1 s2 s3 s4 s5 s6 s7))
|
||||
(add-constraint! prob (λ (s2 s3 s4 s6) (equal? (set s2 s3 s4 s6) four-digit)) '(s2 s3 s4 s6))
|
||||
(add-constraint! prob (λ (s1 s3 s6) (equal? (set s1 s3 s6) seven-digit)) '(s1 s3 s6))
|
||||
(solve prob))
|
||||
|
||||
(define segments-table (list
|
||||
(cons (set 's1 's2 's3 's5 's6 's7) 0)
|
||||
(cons (set 's3 's6) 1)
|
||||
(cons (set 's1 's3 's4 's5 's7) 2)
|
||||
(cons (set 's1 's3 's4 's6 's7) 3)
|
||||
(cons (set 's2 's3 's4 's6) 4)
|
||||
(cons (set 's1 's2 's4 's6 's7) 5)
|
||||
(cons (set 's1 's2 's4 's5 's6 's7) 6)
|
||||
(cons (set 's1 's3 's6) 7)
|
||||
(cons (set 's1 's2 's3 's4 's5 's6 's7) 8)
|
||||
(cons (set 's1 's2 's3 's4 's6 's7) 9)))
|
||||
|
||||
(define (string->symbols str) (map (λ (c) (string->symbol (string c))) (string->list str)))
|
||||
|
||||
(define (wire-config strs)
|
||||
(define encdoded-digits (map (compose1 list->set string->symbols) strs))
|
||||
(define (filter-length len) (filter (λ (x) (= len (set-count x))) encdoded-digits))
|
||||
(define one-digit (car (filter-length 2)))
|
||||
(define four-digit (car (filter-length 4)))
|
||||
(define seven-digit (car (filter-length 3)))
|
||||
(define five-segment-digits (filter-length 5))
|
||||
(infer-config #:one one-digit #:four four-digit #:seven seven-digit #:five five-segment-digits))
|
||||
|
||||
(define (decode-number config pattern)
|
||||
(define config-reverse (for/hasheq ([(k v) (in-dict config)])
|
||||
(values v k)))
|
||||
(define segments (for/set ([item pattern])
|
||||
(dict-ref config-reverse item)))
|
||||
(dict-ref segments-table segments))
|
||||
|
||||
(define (output-value config strs)
|
||||
(map (λ (pat) (decode-number config pat)) (map (compose1 list->set string->symbols) strs)))
|
||||
|
||||
(define (rec->output rec)
|
||||
(for/sum ([digit (reverse (output-value (wire-config (first rec)) (second rec)))]
|
||||
[power (in-naturals)])
|
||||
(* digit (expt 10 power))))
|
||||
|
||||
(check-equal? (apply + (map rec->output recs)) 986179)
|
@ -0,0 +1,200 @@
|
||||
fgcae ebafc cabdef eg abecfg abgfed feg gafdc bceg ebgcadf | defagbc faecg cfdag gecb
|
||||
eagd cad fgadbc aefdcg dcebfg fcegd cbeaf ad dbgfeca defca | cfdeg gdcabf fcgde afgced
|
||||
gfdeca aeb eb fbdag eafdc adfbe cefdab bdaegcf efbc ecadgb | eb dbafe eab faecd
|
||||
facbdge efdg gcafd daegc caegb aecfdb ade ed gafbdc dgfeac | de abcdef faedcg dfgca
|
||||
dcaegbf bc dcgeab cbgad cebg cdfaeb fbadg acdge cefdga cdb | gdcfae gbec gdace cgadfe
|
||||
ceagfbd fbaeg fadge fbegad abgecf dafcg ed edab ged dfcbeg | gebfa de gbafec ed
|
||||
acedbf adfbg cgafedb geac cgb befcgd bcgaf bfgace cg bfeac | bcdfeg fecba cafgeb bgdfa
|
||||
egadc cea ac agbcedf cgab bgcade fbcaed eadfbg fegdc ebdag | fdecabg fcged cdbage efgdab
|
||||
cbfge gdc cdea efdag dc cdfeg gfbcad gcdeaf cdeagbf egfadb | dfcge egcfd fcdbag dc
|
||||
gaedb fbced gcdbef cge gc decgb dcbgfea cgfb cgdfea fbcade | fdegbac fecbd ecg degba
|
||||
geaf bcfedg agbcd bfeagd dgfbe cbdaef beacdfg abe agebd ea | fbecdg geaf gebfad adgbc
|
||||
bed afgebd adecf bafgedc dbca cfegb becdf fabdce bd gcfdea | gfdaeb ebfgad dbefc cbda
|
||||
gacfebd ag bedfca agbfde egfcab dfga degab fbade bag bdecg | dgaf abcfed agb bfecag
|
||||
afebg afdeg gcbe acebdf cfbage cafeb gab decgabf bg gcfdba | gb caebf abgef acfebd
|
||||
efdab fabdgce gcbfa eg gacbfe beg ecag beafg dfabcg bgecfd | bge fgdcbe gcfdba ebdaf
|
||||
aecbd bdagef gd bfega aefgcbd gfde gfdcab dbg edgba febagc | dg dagfbc dgfe eabdgf
|
||||
gdfba egfacbd gdcefa baf gcba fdagcb dgfac ab dcfeba ebgdf | dcfag bfa gafcd cbag
|
||||
afbe bdagc cedfb defcab ebfdgac gfedbc cbfad af adgcfe adf | dafbc dfbac fdcegb gadcb
|
||||
fcgedb ca fdcage cagdbef ceab acedfb fdbce cafdb cda afgbd | ac dcafb efgdac ebcfda
|
||||
fbad gbcda dcefgb cfeadg dgbcaf bcafdeg ad gcabe adc dfbcg | gbcdef bcfdg cgbfd bfadgc
|
||||
afcgeb bedag bdecafg agb bedfga fdagce bg bgfd dfgea cdabe | badge cagdfe efdag afegbd
|
||||
gfed dcaef ge bafdce daceg acebfg cefadg egc ecdabfg gacdb | bcgad bcegaf agecd degcafb
|
||||
deacb adcge ab acb fbdce faedbgc fgadec gabd deabgc ecbfag | dfbec ab cbagfe bcfgae
|
||||
gcabfde ecf cbdeg bacgf fedg ecfgb gfedcb fcaedb cebdag fe | dbcegf bcgdfe gfde defg
|
||||
daefb bfg gedafb fabge dbafec cfega bdga cgbdfe gb gbacedf | aecfg bcedaf begdcf dgba
|
||||
bagce bf bdacfeg efbg fcb cefab gbfadc cafebg ecdfa bacdge | fegb cegba bagce efbg
|
||||
becag cfeg cefgbad fbace gfeacb acdegb bef ef adbcf fdabge | ef bdfac cbegad gbeac
|
||||
egb afcbe fbaeg eabgfdc gcab gb gfdea fgbecd bcdafe gafbec | fcdgeb edcgbfa gbe fgeba
|
||||
dga caebd ecdag cegfd abdfce dafbge ecbgda bcdgefa ga agbc | afdbec ecfdab gdaec gad
|
||||
fc gbdefc cfe ebdaf fcbeda gbafde edacg bfcdgae dacef cabf | decgfba cdbefg cf ecdabf
|
||||
febgd dafgbc caed cgd ceadgf fbecga dcgfe aegfc gbedfca cd | dgfeb fgced dcafebg agdfce
|
||||
ecdafgb bgade bgd fabd gbaef bd egadbf ceadg cfbgea dgbfec | edagc bdage bfda dbgae
|
||||
cgeba aefgcd dfceagb dc ced facbed cdfb dbaec adfeb fgedba | fbdea bgcae efbda fcdeag
|
||||
caegbf dcfga afcedgb afgdcb fcedag ab edbcg dbfa gdcab abg | bag cbdag agb ab
|
||||
gadfecb befc fgdbea cf fedagc fac bcgfa agbfe adgcb feagcb | gbcda cgbad bcgfa cf
|
||||
dae aefcb dgabec dacfg afebdc ebfd afecgb aedcf fbcagde ed | ecabfgd bedf bcadef egdacfb
|
||||
abcf fcega fdgce fegbda eafdcgb ac gabecd gbfae beagfc eca | edbgca edbfga cae gface
|
||||
bgedcf afcdbg ag gcbaef fcedgab afgdb cfgbd befda acdg agf | fdbga ceadbfg egfbac fag
|
||||
bad edafc bdeg abcgde ecafgbd gfadcb bgaec db edcba geafcb | cdafe fdcabg cdfageb dbge
|
||||
geb bgcf agfcde gb befag gfbcae defab gabdec eacfg gabecfd | afbedgc gceabf abgef egacf
|
||||
fdeac acg cfegda cbeadf fegdbca ag acefg adge bfdgca gbcfe | gecdaf efgca cgbafd cfgeb
|
||||
begdf bdfgc ebcf adfcg cdegbf dgeafb cbg cb bfeagdc gbdcea | acgedb fagdbe bgfde dfgac
|
||||
afcgdb aedc bedgf egafcd afdge gecaf fcgebda gda da ceabfg | gedbf gacfe adg agdef
|
||||
bdeafg acgebdf dgcfa fa cafe dgfbc gaf edagfc cgabde agedc | fadbge bdgfcea dgcefa cgeda
|
||||
gacfbde defag cbgef gbca efadcb afcbeg cgbdfe ba eba gefab | fegab abe ebfcgd fbgae
|
||||
gfbdec fbcade cabdegf ebdg bfd dcfgb cadgf gebcf db fcabge | eacdgfb bdge ebdg ecafdb
|
||||
egcfba fdcae fcdaeb gcfdae fabd ba cdeab fcdbaeg eba decbg | cabed facbed cbade dfcea
|
||||
agdfe acfdeg fcdbeg dgf gdaec df cadf ceagbfd abgfe gbdaec | bgcdef abfge gbefcd df
|
||||
dgebf afgdb bfa fcbade af dcafgb agcf gcbda dabgecf gadecb | dbcga abcdge fadgbce eagcbd
|
||||
dbcga bea egacdf dageb be efbd abgfce gadfe fcbegad aebfdg | eba be bdage bedga
|
||||
gcbd egbdafc fgc fbgedc gc aedbfg cefgb fedbg cfaegd efabc | bface egfbc bgdacfe gc
|
||||
fdgae dc ced gbcd gbcefd decfba becfg ecfabg cgfde gbcadfe | edbcfg cd cafgbe cdegbf
|
||||
geadcf efg gadef fg fecad acbgfe dagecbf dcgf gadbe afbdce | edafcg bgcfade gfdc abedg
|
||||
edcba ecgdb aedbcf aebf dabfc fdacge badgfc ae ead gfcbade | gcebdaf degbc ebfadc efdcba
|
||||
caedbg dbgec dcbf ecgdbf cgdef dgf bgaedcf egacf afebgd fd | cdfbeg ecfbgda gcbfed cbgedf
|
||||
bdag acdeb ecgdb egbcfa fcdbega gb dbecag cbdafe ebg gdcef | bedgc abdfcge efagcb cdgef
|
||||
bfade bfdga dfbgec cagbfd dfgacbe gba gacf ag gdcbf abgedc | cfag abdcge ebafd abefd
|
||||
agcdef bcfda bdgca aebdfcg eagdc gb dbg gbea cedagb bfgdec | dfabgec eafdgc acdge gdecab
|
||||
ebacdfg cgbfad egdbc bdgfa daef bae gabed febadg ae gacbef | fagdb daebgf fgdab bea
|
||||
dcgbf cbedf degc bgc fcgdbea fbadg cfdgbe gc efacgb fdbace | edfcb cfeabg cg edbacf
|
||||
bcdagfe dfacb cbfdge bgcdf fdgeac acd agbd acbef da dcgfba | cbgdf dgab ad gbdcaf
|
||||
edgfbca gbe be ceba bdaecg gefcd dbagc egbadf dcegb dfgabc | gcfde gfceabd gfbcad eagfdb
|
||||
dfcbg fcdga efgb gecbfd gecbda dfbgaec bedfc dgb bfadce bg | dbcgf bfge dacgf dfgcbe
|
||||
cga ebdgaf bfdag cbgfe bfadgc gbfeadc ac cagfb cdba cgadef | bfdag agedcf aegcbfd gcfab
|
||||
gcead gfdbec cbdge gabfce eb dfgcba ecfdgab befd dgcbf ebg | cdgae fbdegc bcdge gcdfb
|
||||
da ebgfda fcdeagb acgbfe gedba dbegc agdecf dae bafeg bfda | gdafec fegba edfbga aed
|
||||
fbagec gdfba bcg gebcfd cbafg bcdfgea ebac cefag faedcg bc | gfbac baegcfd fabegc dgeacbf
|
||||
dfbeag fabdg fdbe abdeg eb dcega gcefba cfdbag dgcfbae geb | cgbafd bdef dcage eb
|
||||
abdcfe gba dagf cagbefd fdbea bfega ag dafbge dcbeag gfceb | afbcde ecgfb dfbega bdgeca
|
||||
dg dge gdbc cfdae bcgae cbdage abgfde cfedagb cdgae eacgbf | eabgc bgeac bcdg cagbe
|
||||
bfd dgaeb gcabde fd bfgce dgfa dbefg gadbfce dbafge fabcde | edfcba efbcg df bdf
|
||||
gcbfd agbecd fedc edcbfg fdb eadfbg bcfag fd gedcb gbacdef | fgbac bdagfec gfbdaec aegbdc
|
||||
cgbdfe ce acedg adcfeg bcfegad fcea ceg abdeg afbdcg fcgda | ecg aefdcg dacge ec
|
||||
egbdfca efacb agcdbe cbaed bdafgc dfaecg debg bd bda agced | geadbc efbca gabfdc bd
|
||||
edcfb bfgecd ecabfd eca abcd fgeab fedcag abfedgc ac bfeca | bgfae eca cdgfeb bfaec
|
||||
cadef cebdga ebd bacdfe dagfec dbfa fcebg ecbgfad db fdecb | befcd acgdeb abdf dbfa
|
||||
gbfecda bfd cdagb fbdacg fgdbec gbaf cbadf aefdc eadcgb bf | adcgb dfbca agbf dafcb
|
||||
abedg acbgf fd gaefcb cagbdef cdaf dcbfeg bdagf dgcbfa bfd | gbadcef df fadgb gabcdf
|
||||
fbgadc dbcfg dcega cgdfe cfedbg caefgb ef gef gfaebcd fedb | fcedg febd gbcdfa cdgfab
|
||||
bg adgb fcaedbg cgfda fcbae bcg dfacge fgcdba decgfb bcagf | cgafb dbfcage bdgcfe dbga
|
||||
ed afbdg acefb aecbfg cfdabeg gedfcb fcdabe ecda def ebdfa | gbafd gedfcb dfegcb dfgba
|
||||
gcdfae efgdb abdfcg fde gdabf dbcegfa fedgab efab ef ebdcg | eafb gbfda gacedf cbdge
|
||||
edagfc gfaecbd bgced cbegfd cb gefdc badgfc bdc efbc adegb | dgbec cegafd dcbgef dgecb
|
||||
gedcab beg eg cafgb fbegc gdfe bdgfec gabcedf bdafce bcdfe | gcefb afcbed ge gdfe
|
||||
fdbagc cdgefab edacf ceba ea cfbaed ecfdg abfegd adfbc eda | ea beadfc abcgdef ecdgf
|
||||
fbc gfbacd fecda cbdfa dbgf dceabg gbcdfea efbgac cdabg bf | gbdf agbced gaedbc gfdb
|
||||
aegcb bfgecd fbegad fcagdbe dfgce fcbd gdeacf fb bgf bgfce | bgafedc gcdaef dgfcbe eadgcf
|
||||
def dbce agdfeb ed fdgbcea dgcfb aegfc dfgbac gecfd cdfgbe | cdfegb ed cdgfaeb ebdc
|
||||
ecbfad afdb eagbfc caebgdf edfcb dgfec cgdbae bd bcafe bdc | bfacegd fbdcae dbc bgfdcea
|
||||
dfgba eg cfbead gde bfedgc dceab cabfdge gdbae aecg aedgcb | egd adebg gde debcfa
|
||||
cadfb egfb afgbc adbegc ecgadf ecagb fga ecfgab bgacfde fg | afcbg cgfba gf dacbge
|
||||
cegbf dec efcdg facdge dfae dcbafge ed adgfc fdbagc cgaebd | dce gbcfe afcdgbe dcgabf
|
||||
cfabe fa eabgfc cgaf fba gfbce dcfbge edbgcfa efbadg acebd | cfebga bfa fedcagb abfce
|
||||
acdfb dbagf afcebgd beag afgedb gfdea gbd fgdcbe gb cdeagf | dafge gafed gfacde gb
|
||||
gdfeac dfgce ebfadcg edagc dacf baegdc fd gdf egcfb dabgef | degfbac cfdeg daebgf cdeagb
|
||||
fcgabe ebcd ecfdg dabcgf gfecabd cfd ebcfg dc bcfegd adefg | agedf cd bcefg dc
|
||||
cbaeg bcfea fb feb gfaceb gdfbec dagbec gfab deacf bgcaedf | acbfge bf afgb efb
|
||||
egdba cadgfbe efadbg cg begc bfgdca caegd abcegd dcg acdfe | fbegcad bceg gcd cdgebaf
|
||||
agbcd dafcgb cfdg ceadb fdgeba eafbcg gfdab gbc bgdcafe cg | gfadcbe fbagd decba gc
|
||||
gfbec adgc dge egdcfa abgfde abgdfce dg eacfdb fdaec gdfce | fecgd gd fgcbe acdef
|
||||
fdbceg bfedc af fegcad cbdag daf efab dabcef fbeadgc cbfad | fcabd cbfad gcfdbe gadbc
|
||||
ebgac fabdeg bedca cg aegdcfb geacbf ceg efgba facg fbedcg | gecdfb aebfg fagc ceg
|
||||
eagb dcgeb ba abd cbeagd cdgafb fecbdga fgedcb dacfe dacbe | bdfeacg cadgbf bgedfc fcdae
|
||||
dbac cfgae cbfgde ba bga gcfbad dcfebga gcdbf feagbd cgbaf | cgafb fagbdc dcfbg afgebd
|
||||
adbgfe fgb egdafc cbafd dfegbc edgafbc egfcd cegb gfcdb gb | bg fdacge efcadg egdfba
|
||||
agfbe cgaefdb gbdf edagb afg cdgafe gfedab fg egcdba fabec | fcbdega fag agf agf
|
||||
cae edabfc cdfega ca cfba gadeb fdecb ecagfbd cbgdef acdeb | facdeb fgecad bfadce efcgbad
|
||||
facb dbfec dceabf efgcd cb aecfbgd dgfbae eafdb ebdagc bcd | bfedc cdegab cbdfe adefb
|
||||
fecbga badgc dga bfgadec dg geacb cgedba dfebag gcde fcabd | decg gda baceg gd
|
||||
gecbd gcbdfea cbfg bg bge egbcdf dcbef beafdc cdeag bfgeda | agcde dceag gfabde beg
|
||||
gefba gacfbe facdeg cg cgab gfc efbdcag cfgeb cefbd afegbd | gfc afbge dafegb aebcgf
|
||||
egd aebfgd gefc ge gedbfca bdcfe dfcegb gecdb edbacf cdbag | dacbg edcfbg bcdfe ge
|
||||
df ebdga gcdefa cfbd bgdfa afgcb dfeagbc bfacgd fgd facebg | gaebd gecbaf fdcb dfbag
|
||||
fag cegfdab cadebg dabcgf abefg eafc ecafgb ebacg fbdge fa | ebfag dbcgfae gbecad fdbgac
|
||||
gecbd gefa gfc fabdcg bfaecd ecgafbd fg befgc efabc gecbfa | gfae gcf egbdafc edgbc
|
||||
bfgae fcebag fdbe fd fedag adgfbc fdbgea ecagd agcbfed fad | fgabe dfeb ebfd gefba
|
||||
ecdgfb afge bdage ebcda eg abdgef fgadb gabcfd dge bcdagef | gdebfa eg agfbdec afeg
|
||||
dbc acefd cegadbf fbcde afcb fdcaeg bc acdbge febdac debfg | ceafd caefd gfbaced dcb
|
||||
fecgb fgacd gdcefba de gbafce febd gecfd edc fecdbg ecbgda | becdfg ed becgad gcdeba
|
||||
agfdbe fbac bcd edacfb bgecfd cb cdeba cfgdeab acged edfab | cb dbc adbce bdfae
|
||||
dgacef bdfa ecgbf ab fegba dgafe efdbgca abg acebdg afbdge | gefda ecgafd ecfbg begcad
|
||||
gbfcea bgfa afdebc aegdcb af bgcdfea bgeac gecdf afc fgace | bfgecad fca afc abfg
|
||||
cfe dgcfe fdagcb gebdc egfa gbcdefa dcebfa fe agdfc fgaedc | dfgac fe fce fcdbega
|
||||
fecgab gcbdef cbaefgd dfgbe dgcfe eb bfe dbfga edbc acfegd | fbdeg fdgeca agefbc egcfd
|
||||
aecd bac dfacbe cafdb ac gefcab gfcdbe fcbde gbdaf cbdegaf | gcdbefa fbgcae ecad fagecb
|
||||
eagbf cagedf geafdbc fdgbce adefb aecfd adcb deb faecbd bd | ebd deabf fadcge cdagfe
|
||||
gadefcb bfcga eadcgb egdbfc deag ecg edabc acedbf eg abgce | gdea bagce gce gce
|
||||
agcfe bec gecab gbeda facb dbfgec fcegab gfacde gfdaceb cb | cb cefdgb cadefgb bc
|
||||
fdgb df egabcf fegda cedga fegab efdbac def cgdefba gafedb | facdbe bafceg agedf fdebga
|
||||
fdaecg dbcafg abfgec dc caefg cedg aecfd abdgfce eadbf fcd | cgefab gbfacd fbegac fabecg
|
||||
dfecabg bcfeag gdafce dagbfc cdefb dca gafbc dbag da bcadf | dca bagfce cbfda cdagbf
|
||||
dabfgec febadg gbcdae gfbe adebf ef cabdf edfgca ebgda eaf | gfacbed abgced egdfca egfb
|
||||
cfdea dc fdagebc fegcbd agdc gcfade fcabe cfd efdgba gfead | bdfcge agdc dgefa cfd
|
||||
gbfca febadcg bc bdegcf beca begaf gabedf cgfbae cgfad cbg | bcg dcaefgb dfgceb afebdg
|
||||
cg cgbf bedcg fcagde adefbcg efdgcb ebacd cgd edbfg egdafb | cfgedb bgcf acegdf cfgb
|
||||
bfad adcgbe faceg fagbdc df afdgc efcbdag dfbegc gfd badcg | gfd abgcd fgd abfd
|
||||
bcadgf cgdfb adgcb gf gafc dcfeabg bdagce dgf dfbega cebdf | adcbfg gfca fdcbe gfac
|
||||
daebf fcabgde bgdcef gab ga edbcga afcg ebfga aefbgc egbcf | ebcfg ebcgfa fcgebd agcf
|
||||
gedab fg afgecb cfgd feg cfabed befdc fgdcbe gdceafb befgd | ecafbg ecfbd febdc gf
|
||||
gcbadf ce gfcdb fec feabd gbecdf dbcfage febdc agcdfe egbc | bafed gcbe gefcbd egcb
|
||||
cbdfg gbcafd feb gaecf gcbfe gfbdae be fcgabde bdgcef becd | abgedf gdfebc aedgfb fbe
|
||||
edacgbf fbdae edgac bg gab bagdec dagfce fadbgc cebg bgdea | aedgb bg cebg adcge
|
||||
bda gbfea gedcab gfbceda bgdfa bfcdg febcdg bagcfd cfad da | dbecag bgfdc gdbfa facd
|
||||
ceabd dabfe acgde bc fbca cgbfde febgda dfecagb ebafdc bdc | cbdae dbfea fgdceb gbfedc
|
||||
acg fadbgce cfgdeb dbgce efdca ag dbga cagbef egacd cdgbea | gdecabf gcbfea ecbdg gac
|
||||
dfgacb ged egfdab efcgbda gcefbd debga ebadc ge aegf gfdab | cdfgab cdafgb bfcgda ge
|
||||
gdbeca bcfde eafg cefbgad dgafcb ge degfb adefbg dgfba bge | bdfeg begdf ebfadg eabdfgc
|
||||
cfbdgae gbaec bagfcd gfcba dcaeg bacfeg dbeacf bec efgb eb | ceb egcab cagfb dgcae
|
||||
fdcagb gdaecb fcadg bcdgaef gd dfcea gbcaf aecgfb cgd dgbf | gfadc gfdb badgfc gbfca
|
||||
bcafed defgcab fgcb cfbae cagde agebfc gbcae gbe gadefb gb | bg gfcaeb bg aedgc
|
||||
bcfadeg gbfd eacfbd gdafe afebg bafegd geafcd gebca fb bfa | agdefc eafbdg fgead gedaf
|
||||
fcgeabd dgeaf ebgfad gceafb geadc ac aec ebcdg cafd adgefc | gbfadec egcbd acfd dgabef
|
||||
eac fbdgec ea eadb cbaeg agfdecb eafdgc dcgbe bcfga adcbeg | aec abde eac ea
|
||||
cedb gcadbe ed edgfbac fbega abdge gacdb fdacgb dcefag aed | cdagb gbcafd gdefac gedafc
|
||||
cae agfbec ae begcd feab fadgbc ecfadg ecabg cdgbefa cabfg | ecgba afcgb efba dgeafc
|
||||
fecgabd badf efadg abedfg fea fdgceb fedgb aebfgc af gdcae | ebfgca fae fea af
|
||||
bgedac gbfae dcbefg acbf fb gaedf cagedbf aebgc gebfca fgb | aedgf fdgea bgfae bfdgeac
|
||||
bagcfe eadcb gb facegdb bgc fdcag efbcad beadgc bgadc ebgd | gbc fbcage becad gbfcae
|
||||
cagde gbca dcgbea gc efcad dbgfea dfgecb caedbfg adgbe cdg | gc egdfbc bcga cg
|
||||
efgcbd aebgcd dfe eadfb abged abdcefg bacfd ef bdfaeg faeg | fgae cgdaeb adefb afcbd
|
||||
cgbfea gcbda gefdcb eadf febag bdf fd febgad fadbegc bgadf | gebcfd fgdbea dfb dbf
|
||||
dg cdgfe gecfad dfbce bgefda fgd eafcg efcbag dgac bcdagfe | afdebg gfd aecgf gfcea
|
||||
edfga cgefda gcdbe fbae ab egdabf cfgbda deabg bad adefcgb | ebadg agdeb fbae gbdae
|
||||
gbdcfa gbade ebgac ecbfa adfgbec badecf bgc gcef fbgace gc | gc fcge gacefdb ebgca
|
||||
acefgd ebgaf egfda egcd bgfaecd dgcfa ed abcefd efd abdgcf | def ebgaf fed befcda
|
||||
fecag cag cfagbd agfcbde fabec eabg fdcge cgbfea fadebc ag | cfgbda dfgbeca efdcg dfgcaeb
|
||||
bgecfda ecdag dgfcbe bdgac adbgf afgdbe bfac gdcabf cbd bc | bc acbgefd fagcdb fcba
|
||||
ba efacg cfbgde cfdbg bacgf bgfdea abf bcad cfbeadg bgcfad | bcdgef fdgaeb ab cagfe
|
||||
cbdaf bafdgc eacbd fd dcf fcabg bcdfeg bedgcfa dgfa agbecf | dfga bgfac df agdf
|
||||
edcabf cadbf bgfdcea bgcfad bgcde dfg fg bdfgc cgadfe abfg | adfecg gfbcd acgdfeb cbgdaf
|
||||
badgfc dg bagcde bceda dbcfea beafg debag adg fcbadeg edgc | gebda dcagbf dceba egfab
|
||||
edcf dacfbg dbcefag fbd df bdegfc ebdagc bgfea begcd bfedg | dgebc cbgde dgfbac bdf
|
||||
bdcfg acegfb acebfd fdcag egadcf da daf cgeaf edag bafcegd | gdcaf fgaec bafdec fdaecb
|
||||
cagefd fde gdfba fcgaedb abefd ef dafbeg ebfg afcbgd ebdca | egdbfa bceda dfabg bdace
|
||||
fcgb gcdae bg gfadeb cbfegd fcabed bdg gcdbe fdcbe adbefcg | dgb gfbdec befdc gfbc
|
||||
fabde bgfde bgecda cedgb gf cabfdeg ebfdgc fgbeac fcdg gfb | fgbde efdgb edgbc afedb
|
||||
ebacf cedfab fde eabfd fd baecgf bagde agdebfc dfcb egfadc | ebfdgac acdegf abdefc ebfad
|
||||
gdcb cd cfgae cgbedf fbegd efgdc fadcbe gfeacdb dce dfagbe | gbcd cde gacfe gefdbc
|
||||
geb afedgb bfegca bgade eg dgef gadbc eafdb afebdcg fcbead | cagbd defcba dbafec geafcb
|
||||
fgbdc gbfade gba gefa dbafg cbadge bfgecda ga edbafc dfabe | afbdeg dgfba bgdfa dcfgb
|
||||
agef badce ef febad cabfdg gdfab cbgeafd egfbdc defgba fbe | abefd geaf gafdbe ebcad
|
||||
gd gad bfdg gecba fedabcg fcgeda aedfbc adebf agbdfe dgeab | ebcdaf agd gcfbdae egacb
|
||||
cedbfa ba cgbfa abf dfegac cafeg gabe befgca ebdfcag cbfdg | fab aegcf faecbd fdcebga
|
||||
daefg febdga aegfdbc efgdca eafb bge eb agbdec febgd gbdfc | gbcfd edbfg egb bacegd
|
||||
fbdecg bdafec cfaeb gedac def dceaf abfd fd gfecba gfdaecb | ebfac bdfa gbcdef fd
|
||||
fcbga cbdfeag bafgce fdacg dc fcd fcgbad fadge efcdgb cdab | gaefcb bafegcd acdb abcgf
|
||||
ecgabd acgdf abge ae bcfead fgdaceb ead daegc bcdefg gcbed | egba gaecd cgadbe gdbce
|
||||
aegfbc gf afebdc agebdfc ebcdf feg dcefg bdfg dcgea bgedcf | edbfcg fdgb bdgafce febgcd
|
||||
dcg bcdefa dbfceg fdeacg acbeg bfeagcd cfdae dg dfag agdec | dfcgea dg egdca edagc
|
||||
agcfeb fagbed fdbceg bag gebfd afgd agbfcde acbed ag badeg | cbdea fcedgb gfebac abcegf
|
||||
adbegfc fgdace cadge afcg ebdfca ebgad eac bfgdce cgefd ca | acged fcedg ebagd dgacefb
|
||||
gfeadb gfeab bcfa agebcfd aebgfc fecgbd efc fc gadec egcfa | fgbace fc debgcf afgceb
|
||||
bacg ab cfgbd bfadge acfed fgdecb agedcbf fcabgd bfa dbafc | gfdcb cbga abcg afecbdg
|
||||
ge beagc cfgabd bgaced bgcda fbadgec age ecdagf egbd fcbae | aeg gedbac cadfeg fbgcda
|
||||
dgbafe abfdgec gdf fd agebcf gadec dfcgba befd edfga aebfg | abcgefd dagec dfg df
|
||||
edfcga bcegd baeg cbgdae agdbc gce acgdebf eg gfadbc cefbd | dcbeg bgedc cedbg edcbg
|
||||
adfbe dg cagef dfgb gdbeca aefdg gda edcbaf fdgeba gdecbfa | cdabef eafbd bafcegd dg
|
||||
cd edcbfg dbage fcaebdg facd bgcfea afbedc afbec dbc adecb | adegb bcefag abegd cbgedf
|
||||
gdcbf da ecgbfda adc adgb bagcfd dfbcea egfac dfbceg gdacf | gdba cfdbg adbfec fcaeg
|
||||
bcg bc gdcbae dbca abfgde gdeba ebfacdg egcba faceg dgfbce | geadb badecg ecbfgd baecg
|
@ -0,0 +1,36 @@
|
||||
#lang br
|
||||
(require racket/file rackunit)
|
||||
|
||||
(define depths
|
||||
(for*/hasheqv ([(line lidx) (in-indexed (file->lines "09.rktd"))]
|
||||
[(depth cidx) (in-indexed line)])
|
||||
(values (make-rectangular cidx lidx) (string->number (string depth)))))
|
||||
|
||||
(define (neighbors loc)
|
||||
(for*/list ([delta '(1 -1)]
|
||||
[ifactor '(1 +i)])
|
||||
(+ loc (* delta ifactor))))
|
||||
|
||||
(define (low? loc)
|
||||
(< (hash-ref depths loc)
|
||||
(apply min (filter-map (λ (li) (hash-ref depths li #f)) (neighbors loc)))))
|
||||
|
||||
(define low-locs (for/list ([(loc depth) (in-hash depths)]
|
||||
#:when (low? loc))
|
||||
loc))
|
||||
|
||||
(check-equal? (apply + (map (λ (lp) (add1 (hash-ref depths lp))) low-locs)) 539)
|
||||
|
||||
(define (higher-adjacent loc)
|
||||
(for/list ([neighbor (neighbors loc)]
|
||||
#:when (and
|
||||
(hash-has-key? depths neighbor)
|
||||
(not (= (hash-ref depths neighbor) 9))
|
||||
(< (hash-ref depths loc) (hash-ref depths neighbor))))
|
||||
neighbor))
|
||||
|
||||
(define (basin-at loc)
|
||||
(remove-duplicates (cons loc (append-map basin-at (higher-adjacent loc)))))
|
||||
|
||||
(define basin-sizes (map length (map basin-at low-locs)))
|
||||
(check-equal? (apply * (take (sort basin-sizes >) 3)) 736920)
|
@ -0,0 +1,100 @@
|
||||
9976786789439313678999989767678999865435679398654323678999987654313468954569865334568916987643236789
|
||||
9754395678998754599898978954567999976556789498775413478998798743203457893479973212479425698432145799
|
||||
9843234589899866698786767943456789987687899987653104567897659957312368931298984596599934679549234689
|
||||
8654785789789979897645459892967895698798999999873215698958349876433456892987899989989895998998965899
|
||||
9865696895678989999731346799898954569999888921954524899542129986556767999976998679767699767897896789
|
||||
9876789934799998997890235689799962978999767939878436789674398898668979998865797598755589656656897994
|
||||
9997898956789987976531345679677899899987656899989547994989987798779893987654679459543478943348998923
|
||||
8998987997999995987632456789545698789498545689999759213498986649899754597643812398656569651267899434
|
||||
7999896889998754698743458997324789579597934778923978904597665431998996997532101259769778953456897645
|
||||
6798765567899643987654599765437994468986724567910989895689543210127789876543312345978989764567979967
|
||||
4987654378989756998765689976546792399654212389891296789798787631435678987654443656989999875678967898
|
||||
2098754235678999779876797987656910987543101245789945679899976543576899998765564778999932996789458929
|
||||
3989976127889987667997896798767891987654424699896832398932987656688978989896685889568899869892349310
|
||||
9868997346999875454598945699898932398765536789995431987893498767899769875959786893456789654901258921
|
||||
8754398757997654323579436989989693999896645892189546976789999989923459974349897932365696543212347893
|
||||
6543239898996543212467949876976579899987756943478969875656898694304598763201998921234789876423456789
|
||||
5432123999987954323678998765432455689299897894567899764348976543212797654512989432345998765434567892
|
||||
7521012999899876549789999897621234579109998985678998654237898754344598865623976543456899876545679921
|
||||
8633439878799987899897899998510123678998789976899899893156789765998789998734989954987932987678789540
|
||||
9864598765689998965956798679323234569876577897916789989345678989899893239845698899898921099989898432
|
||||
9998679854345999654346689598764345779765466789434598978976789998799932134956987645689542134599987656
|
||||
8998798943239876543235595439895456989887345678949987956897899987679543235977898634579763289998799867
|
||||
6899987654945998754123459910976567899996576789298976745679999896568954345989999548678975467896549878
|
||||
5979898999899986543234567891297679999987897890197545236798998765467895456791987656799987579965434989
|
||||
4656789889788998767349679999989989998799998989975432124567899865346896569942998979989998998943219898
|
||||
3546798775667899898457889998967899989654349678985421013456792964236789998899879998879899987894698767
|
||||
2124999654556999999578999887856789978993244569876534124567891098145698766679965987768798986999898756
|
||||
4019886543445678998789498656745689869789123456998975335688989987234897655567894976543567895878986545
|
||||
2129765432137999999894349743136789754698934567899996746899978976457986543456932987657678944669875436
|
||||
7439876543446789987953219865347996543567897678985987968999767896569875432345891099768989323456996557
|
||||
6545998655567896896432101965468987662378998989864699879987658899678987564676792943978993101245987698
|
||||
9656789986878995987643229877599299831499349899943012989976545798989898665687899891099765622456798789
|
||||
8967893297889689998784346987689123910976456789652127899965434567898799897798989799999865436567899893
|
||||
7898989098993568999896598998891019899897887899754335789854323459998678998929978677892987545678978932
|
||||
6989878999012456789998799989989129798789998979896467899765401568892489789219865566991297656789769991
|
||||
5978567896434568999999988664578998654698999567987568987654312456791336678997654455789998769893456989
|
||||
4564456789565689989899977553467976553487893459998679598776534587890124569898653234567899899932499879
|
||||
3412367998798799976799765432149875432346892467899795439987659698989235879679765165689998989543989967
|
||||
2101267899899899865789979574235996543556921235679899920398878969778956989469981012357897678999867898
|
||||
3213458902942998654799988765346987965698910126896998891239989754567897892398792123968958569987658919
|
||||
4323667899431299865678999875467899879899991298945987789645997643456789954999653246799542459876549201
|
||||
6454798988949987978789543987598923989987789989539976567959865432347899999898754757898931345998678912
|
||||
7565899567898765989999432399999212399876569878998765458967987541767979889769875768967890156999789323
|
||||
8787893458999994395678940998798993569765498567897654378998998652378967678943986779756799299899996547
|
||||
9898984567899989234567899895576789679854376456899989234989976543578954587892197889549898986789769756
|
||||
8999765698969878987679999784445689798765212345698762134567897665689543456789098994338987654678959897
|
||||
7689878789757767898991987643234778949854323456798743457789998778789642345678999543227699865789244998
|
||||
6567989897643456789210299753124569534999954567987654568899899899999765467889987654103456986990123469
|
||||
5478999976532345689321398921015678965987895678998865679945799998999876989996798793212568998932645567
|
||||
4369898764321234789932987932124789976996799799879978795634568987899987896765979984324579679943787699
|
||||
5456798765410123567893996893245899989875778986565989894325689976799898965434769876458689557899998789
|
||||
6568899879321235778999875789359989898764567897454598965434798765689769996323459987568789445678999897
|
||||
7679932998932446799987754568998766789832456779213457896545679874579943987899968998789893234789678965
|
||||
8998921987999967899876543479899854698901234568902345679656789863467892399998799659899932145796567973
|
||||
9867899896987899998765432456789783987892345689214696898767998654567999457987688943998643466965459892
|
||||
8756798765695678999897551235699542356789466895438789999879979865678978969896567891239894997896569789
|
||||
4348898654254768999959652357898421368996598987549899989999867979789767998765456789349989789998879675
|
||||
2123998763123456789239743568987210156987679297656789878987656899897659798765345695498878678899998423
|
||||
3239129864346579890126987679875431234898789198987997569876543988987545679892129989697666567789397674
|
||||
5498998765457678989345999893986532456789999999798998678998732567896534569989398879986553435679298786
|
||||
6987689986678799778999878912976543467895667894569989799998643488965423498878987969865432324778999897
|
||||
9876579997989891566789967109898654567973456789994679987987656567893212987569976656986541013567899998
|
||||
9765468998999932345698754398769767678962347999873598976598767779984329765467965545987656723459999999
|
||||
7654357899989993996789965987659898889653458998762987654349898899876498654389894321299867936578987899
|
||||
6543246789879879789898996986543969999784567897654998743236999999987569865234789210156978547789476789
|
||||
6432135678967865678987989987542355678996788969879876574135789987598997973123579931345899658892345699
|
||||
7687548789656654599876767895431234567899899356998765431013892393469986521034567892456789867901557789
|
||||
9798656899545433987654456987650125678967943249659896432354989989578987432145679954667898979212678994
|
||||
9898787998621012976512345798761334789458954998949999563765679878999976565358789976898997989954569313
|
||||
8999998999732135997433558999873547997378999876797698754876798767989989987467898989929876896796798901
|
||||
7899899986543249876547667898984756895489987945679549865677899654878990298998957599949765765689997899
|
||||
6789763298854658997659879987899867896999876435678939978788998743456891999979546467899854234567895998
|
||||
5678943149765867899792989976789998979899987549899598989899239654789979799868932345679972123478924987
|
||||
4789432027986878998910996765678999456789898956965467899999198765689565689657896566798763244569109876
|
||||
9899843456797899987899875654567892345798779767895345678988989876789434798798997678987654559789299954
|
||||
9999754568998998976789654563479954467997659878943234589967979987996545899899698789899765667899987832
|
||||
9998765678919987565699943242348976778976543989542199789856567699397696799943569898759876779999876521
|
||||
8989876789109875454689893101567898989975432397659988998743434569298787898759699999643998896598765430
|
||||
7976989893298755323456789232456789090986941098798767997632129678969899969898988998932449987439875421
|
||||
6895492994398943212345795467767892191999892149899656789547298989654993456987776897891234598321987632
|
||||
5999910989987653202456789578978943989898789236987646797656956996532389767996545456910123987532398943
|
||||
4687899875499854578569897989989659878767679345998334689899897898675478979885432345891435798543459654
|
||||
3496789986799875989689965395699899767654578959886123899989799999896567898765421256789545899866599975
|
||||
2345678997898976798798754234579987654323467998765335789975639878987679999854210168998766789978789989
|
||||
1456789998966987899898655123678999843212345689976547999764526567998989988975432259789987893199899899
|
||||
0267899869445698999989632016789654954301386797897678998653212349999899867997546345678998992098965789
|
||||
9469923954236789998679542124578979865716577896779989998632101239877645456789667456799659789987654567
|
||||
8999919878997999997568993295689899876897679954567896987543212349765432347898778568892345694398767678
|
||||
7887899989889999876457789989789789998998789343679964597654343598654321236789889678901299789459998789
|
||||
6576789999768798765354699979998679789659893212489873298785764789965446545899998799999987999567999893
|
||||
5454678988657669989212989767897578679943954401678994569876989999876557656999029891987686898978998942
|
||||
6213469976543457898929876456896434578894975626899789978989899997998969797898998932396545657899997653
|
||||
7534578954332598997899954345965323456789876545679679899998789896989979898967987543987432346998789767
|
||||
8945789764101239876799875697894212399899998666789456789989679765879989999656798654987621499887679988
|
||||
9767897653214398785789976989976201987989109877891345679765578954567898989545659765699710987674567899
|
||||
9878999764323987674567897978943219896579299989943456998674458943456967878931349889799831298543456789
|
||||
6989789975439876563456999867894329785498989998657569876533267932678955467893456992987542975432545699
|
||||
5497569876798765442499998758965498674356678939978998975420157893489543248954567891598659864321234568
|
||||
4323456988999654321378959967976987543234568921989987654321345789599432139896689932398769765434656899
|
||||
5435567899998766562457949878987898656045679210191099865432467897678945546789796546459879876545767899
|
@ -0,0 +1,102 @@
|
||||
{([[[(<<[{[[[[(){}][()]][({}())]]]<{((<>[]){[]<>})({()()}(<>[]))}<{{{}()}{[]()}}>>})[<(<[[<><>][{}{
|
||||
([(<(((<[({{({(){}}<{}()>)((<>{})[{}<>})}}[{[(<>())[[]]]{{[][]}(<><>)}}{<<{}()>([]())>([<>][{}])}])](<[{[
|
||||
{{[[<[<(<<<{((<>[])([]<>))(<{}><()[]>)}[(((){}){<>[]})<{(){}}<<>[]>>]>{[{{<>{}}<()<>>}<<<>[]>([]<>)>][
|
||||
<[{<(({([[([({{}[]}{<><>})<<[]{}>>]<<<{}{}>((){})><{{}()}<{}[]>>>)](([<([]{})<{}<>>>(<[][]>{()()})
|
||||
{{<(([<[[{<{({{}<>}({}()))<[<>[]](<>[])>}><[(((){})){[()]<<>[]>}][{{<><>}(<>{})}<<()[]>({}())>]>}<[{[(()<>)
|
||||
[<{{{({{[<([<{<><>}{<>{}}><<[][]>[{}<>]>]({<[]{}>[[]{}]}{([]())([][])})){<{[[][]]([]())}>([[[
|
||||
{[<[<<([[<(<<<<>>({})>><({(){}}(<>{}))[{()()}(()[])]>}[<({[]})<[()[]](<>{})>>[<({}{})[()<>]><{(){}}>]]>
|
||||
[(<({{<[{<(<((<><>)<[]<>>)({<><>}<<>()>)><<<()<>>[()()]>{<<>{}>[()<>]}>){{[([]{})<<><>>]([<
|
||||
<<{{<{<{([{(<{<><>}>((()[])<<>{}>))({<{}>}<[[]()][<><>]>)}<{([[]()]{<>{}})}{(<<>()>{<>{}})[{<><>}{<><>}]}>]
|
||||
{(<{<({{([[{<({})[()()]><[{}<>][{}[]]>}<<<[]{}>[<>()]>({{}{}}[{}[]])>]<({[[][]]({}())}[(()[]](<
|
||||
<[<{[<<[(((<([()()]<()()>]([()[]][{}{}])>)[[[{<>}[<>[]]]][(<()()><<>>)<<{}{}>{<>}>]])([(<({}<>)[()()]>
|
||||
(<<{{([<[<[<[{[]()}[{}<>]]<(<>[])[{}]>><[{()[]}[()[]]]<([]<>)(()())>>]{{{{()<>}{()()}}[(<><
|
||||
<[([(<[[[(<[(<{}()>{()()})<<()[]>{(){}}>]><<({[]<>}<{}{}>)[{[][]}{[]{}}]>{<{()()}(()[])>{[<><>
|
||||
[[([[({{{[[(<<()()>[<>[]]>)<[<<>{}>]([[]()][(){}])>]<(<{()<>}[[][]]>(([]{})[[]()]))[<({}[])
|
||||
<<{[({<[[[[[{<<>()>{<>{}}}[<()()>]](<<{}<>>{{}<>]><[{}<>]<()<>>>)][((<[]{}>[[]])<{{}()}>)[((<>{}))<<<>{}>(
|
||||
[[<[[<<(({{<({[]<>}([][]))>{([[]()]{{}<>}){[[]{}][()<>]}}}({{({}()}[[][]]}(((){}){<>})}(<[{}<>]{()()}>
|
||||
{[{<[[(({<({[{()[]}[[][]]]}(({<><>}<{}[]>)))>}{[{(<{[]{}}{{}[]}>{<<><>>})}<{{[[][]]{<>()>}}<{
|
||||
{[({<{<{[[([[<()<>}{[]<>}][<<>[]>([])]])]([({{[]()}({}())}([<>()](<><>)))])]{{<[<<[]<>>(()())>(<<>()>{<>
|
||||
({([<({((<({<<()<>>[(){}]>[(<>{}){<>[]}]}){([{{}[]}])([({}()){<><>}]{[<><>]([]())))}><<[([{}[]])](
|
||||
<{[{<{<<[<<<[(()<>){[][]}]([()<>]({}{}))>{(<{}{}>[<>{}])[{{}()}[(){}]]}><({<[]<>>[<>{}]}{([]<>)<[]{})})<([{}(
|
||||
<[<<(({<[{{(<[[]<>]<<>()>>([{}<>]{[]()}))}{<(([]<>)<()<>>)[({}[])<[]{}>]><<<{}[]>{{}<>}>({<>[]}[(){}])>}}<(
|
||||
[[[[[[(((<{<{(()())<<>{}>}>(<[<><>]({}[])})}{{<[()<>]<[]{}>>[{{}<>}[[]()]]}({<<>[]>}[<{}<>
|
||||
[(({{<{[<[[(<(()())<<>()>>[<<><>><()()>])(<[{}()]><{[]()}<{}{}>>)][<[({}())<{}<>>][({}[])(()[])]>(((
|
||||
(([<({{<{{[<<{[]()>(<>{})>[[{}]{{}{}}]>{<<[]{}>>[([][])[<><>]]}]<<[<<>[]>({}<>)]({<>[]}<{}{}>)>[{<{}<>>{[]()}
|
||||
{(<<[{<<{({(<(<>{})(()())><(<>[]){[]<>}>){[(<>[]){[]()}]{[<>()][{}<>]]}}{([[{}()]]((<><>)))[([{}()]([]()))
|
||||
[{({[[{{[<<{{[{}<>][<>]}([(){}]{<><>})}><(<[()[]][{}{}]><{[]{}}({})>)(<({}[])<()()>>{<{}{}>{[
|
||||
([(({{<[<(([({{}<>}[[][]])<({}[]){{}()}>]{[[{}[]]][((){})]})<[{{{}<>}([]{})}{{[]<>}}]>)[{{<([]())({})>
|
||||
<{{{<<(<{<(<{{<>()}}{({}<>)}>)>}((<{[<{}{}>([]<>)]<<[]()>[{}()]>}<{[<><>]<[]{}>}{{(){}}[[]()]}>>[({(()<>)<{}
|
||||
((<[{<<{{{([[[[][]](<>[])]]{<({}[])([][])]<{{}{}}{()[]}>})}[[{<{<>[]}{<>{}}>}]]}{<[[((()<>)<()[]>){<()>({}[]
|
||||
({[[{<{{<<([(<[]<>>{<>{}})<{()[]}(<>())>])<[{[<><>]({}{})}][<({}())><{()<>}(<>())>]>>>{{(([
|
||||
<((<<(<(<<{{{[{}]<()<>>}{[[]<>]{<><>}}}<[[<>{}]{()()}][<()()>{[][]}]>}{[{[{}()][{}{}]}(<{}()>[{}<>])]}>>
|
||||
(([<({<[[(<(<([]())({}<>)>([{}()]{<>[]}))<{{{}{}}([]{})}<({}{})<{}<>>>>>[{{<<>[]><<>{}>}({{}<>})}{({[]()}(()<
|
||||
{[((<({[([(([{(){}}{{}()}][<[]()>{(){}}])[[[{}[]]{{}<>}]<{[]{}}>]){(<[<><>][[][]]>)[{{<>{}}((){})>[([]())[
|
||||
[[<[<{({[({{([()<>]<()()>)}[<<[]()>>]}((({()()})(<{}>[<>()]))[(({}{}){[]}>(([][])<()()>)]))[{<[<[
|
||||
[<<([((<<(([[({}{})((){})]<({}[])[{}{}]>]<{{<><>}<[]>}>)[<{{<>()}<()()>}{<<>{}>[[]()]}>[(([][])
|
||||
{(<(<[[((<([{<[][]><()>}[[<>{}]]]<<((){}){[]())>[<()<>>(<>[])]>)<{<[[]][<>{}]>({<><>}[<>()])}({{{
|
||||
(<{({({<[[((<<{}<>><<>()>>({{}}<<>[])))[<<{}[]><<><>>>{{[]{}}(())}])[<[([]())<<>{}>]>[[[<><
|
||||
<[{[[{[({{{([<()()><<>[]>])([([]{})(<>())]{([]<>){()[]}})}<{({{}<>}{[]})([()()])}<[[[]<>><<>{}>]<[()()]<(){}
|
||||
<<[<[{{({(({(<[]()>({}{}))([{}[]][[]()])}{{(()[]){<><>}}([<><>]{{}})})[{[[{}{}]({}())]{<<>{}
|
||||
{{{[[[[[<(<<{(()[]){()<>}}<<(){}>(()())>>({(()[])}<<[][]>[<>()]>)>)[{[<(<>())>{<(){}>[{}{}]}]
|
||||
(([<[[{(([([<<<>{}>((){})>[({}{})<()<>>]]([((){})({}())]])[[{[()()][()[]]}([[][]](<>()))][<{()<
|
||||
([<{{[[{<{[({<()[]>{[]<>}}([()<>]<[]()>))]}>{[<({({}{})})>{{<[<>{}][()<>]>({[]}{[]<>})}{<[[]{}](<>())
|
||||
[{<<<{{((<{<<{[]()}<<>{}>>{((){}}{()()}}>}{[((()<>){<>})]({{()()}{(){}}}(<<>()>))}><[<{<{}><(
|
||||
(((<<<<{((((<{<>[]}{<>()}>)(((<>{})(<><>))))))}><<{<(<<<[]{}><[]>><{[]()}{[]())>>{{<{}<>>}{{
|
||||
{{[{<(({[[[<[[(){}]]><<[{}{}]({}())>{{[][]}[()()]}>]<{<[<>{}][<>{}]>[(()[])<()[]>]}[{<{}<>>({
|
||||
{[{{[<[(((([{{{}{}}}({<>{}}[[][]])]){[<([]<>)([][])><{()<>}([]())>](<({}<>)<()>>(<()[]>{{}()}))
|
||||
{{[(<<[<{<{[[<<><>>[()()]]]<(([]<>))<[[]{}]<[]>>>}>}>{{[<<<[()()]({}())>{<{}()>(<>[])}>([[(){}]<{}[]>]({(
|
||||
[[[<<(<[{<[[<{<>[]}{{}[]}>]{({<>{}}[<>]]<({}{})[<><>]>}]((([{}{}][{}<>]))[({<>()}(<>{}))])
|
||||
{{((<<[({<<<{[(){}]({}())}([<>{}]<(){}>)>([(()<>)<{}[]>]<<[]{}><<>{}>>)>[[<{<>}((){})>[{()[]}<{}<>>]](
|
||||
((<<<<(<[{((<[[]{}](<><>)>{(()<>){()[]}}))}{<({(()())[(){}]}[[[]<>]<{}<>>])<([()[]])[{{}{}}{<><>}]>]}][<[{{
|
||||
[[({<{{([([<{<<>()><()()>}>((<{}<>>{<>{}})[(()<>)[{}[]]])])[{{(([]())[<><>])({<>[]}(<>{}))}[[<[]><<>[]>]({[
|
||||
[[(<(<[[(<{(({<>()}(<>[])){<<>[]>{()}}){({<>()}((){}))<<{}[]>[<><>]>}}{({<<>[]>[{}<>]})[[{(
|
||||
({[<({<{<(<({([]<>){{}[]}}<({}{})[{}{}]>){{([]<>){(){}}}(<[]<>>{<><>})}><[[(<>())]{([]<>)}
|
||||
{{[[[<{<(<{[(({}[])({}{}))<<()<>>>][<[{}{}]{()[]}>(<[]<>>{<><>})]}<{[<<>()>]<([]())<<>()>>}>>)
|
||||
(({{{<(([[<(<((){})><[[]{}][{}()]>)<{[{}{}]}<(<>[])>>>]])({{{<[<()<>>{()<>}]>([<<>{}>(()())]<<<>{}>{[]}
|
||||
{{[[[[({<{[{<[()<>]<<><>>>({<>()}<<>{}>)}(({[]<>}([]))<<<><>>[[]<>]>)]<(<<()()>([]<>>>{({}{}){()()}})[[[<><
|
||||
[<<{[[([(<{[{{[]()}{[][]}}{{[]()}{(){}}}]{{[{}<>]([]<>)}(<{}()><<>()>)}}<[<{{}<>}<[]<>>><[[]{}]([]{})>][{({
|
||||
[[[<<(({(<<((<{}<>><(){}>)<([]<>)(()[])>)[((<>())<(){}>){{(){}}{<>[]}}]><<({(){}}{{}<>})>{[<[]{}><[]{}>](<()
|
||||
({({{<[<<<[{{<{}[]>[(){}]}{(<>[]){{}}}}]{[[{[][]}{[]<>}]{(())([]{})}](<({}{})(()())><{<>()}>)}>>>]([({
|
||||
<[(((<{<{[<{{{[]<>}{<><>}}{([][])[<>()]}][[[()<>]<{}[]>](({}<>)<[]()>)]>][(<{{{}[]}((){})}{{<>{}}({}()
|
||||
{<{[({<<(<[<([<>]<[]()>)<({}()){()[]}>>([{()[]}[{}{}]])]>(([{[[]<>][[]<>]}[[<>()]<<>()>]>(((()[]){<>{}}){
|
||||
<(({<{[(<([(<{[]{}}{[]()}>){{(<><>){[][]}}[{{}()}<[][]>]}])>(<{{{[()<>][()<>]}({{}[]}[[]{}])}}(<{{[]{}
|
||||
{<[<[{{<<<([[[{}[]]{<>[]}](<<>[]>[()()])][(([]<>)]])>([[<{()}{<><>}>[(<>[])<{}()>]]]{<{<[]{}>[[]
|
||||
([{[[<<<<{<[({[]{}}(<>()))[<{}<>>[[]{}]]](([{}<>]){{[]()}[<>[]]})>[{(([][])[{}[]]){(<><>)(<>[])}}(<{()<>}
|
||||
<<(([<{[((<[(<(){}>[<><>])[<<>[]><()())]]{<{()[]}(()<>)>}>)[<<{<(){}><{}()>}{[{}<>]<(){}>}>><[<{<>[]}{[][
|
||||
(<<[<{<(<<({<([]{}){[][]}>{<[][]>{<>{}}}}[(([]())<<><>>){<{}><<>[]>}])(<{[<>[]]}>{<[{}<>}{<>{}}><{<><>}{()[
|
||||
[[[[{<[{[<(<[(()())<{}[]>][(()())<()>]><{{()()}[<>{}]}[({}()><[]<>>]>)<{{[[]<>]<[][]>}{[<><>]
|
||||
{{<(({{<{(<([<[][]>(()[])])<<{<><>}<[]<>>><(<>{})>>><{[[[]{}]{<>[]}](<<>{}>(<>[]))}[[<()<>><()<>>]<{()<
|
||||
<[({<[[[(<{[(<{}()><(){}>)(<[][]><<>{}>)]<<{{}[]}<{}()>>[(<>())<<><>>]>>{<[([]{})[(){}]]{[(
|
||||
[{<<<({<[[[<{{<>{}}<()<>>}{[[]()][(){}]}>{(({}[])<[]{}>){<()>(()[])}}]<{<({}<>)<{}[]>>[<{}{}><<><>
|
||||
{<<[(<<<(<[<<{<><>}>({<>()}(()[]))>[([<><>][[]{}])(([]<>))]]>)>[({[<([[][]]({}))<((){}){[]<>}]>[[
|
||||
([<{<(<<{({<{<(){}>({}<>)}}{<[{}()][()<>]>{<[]<>>{<>[]}}}}<({[{}{}](<>[])}(<[][]>[{}<>]))<
|
||||
{([<<<<{[<<[[<{}{}><[][]>]<{{}()}[()[]]>]<[(()[]){<>[]}][[[]()][()<>>]>>(<[{<>()}(<><>)]{<<>{}>{
|
||||
[[([(([[[<[((<()()>)([[]{}]<[]()>))]><{{[[[]{}]([]{})][(()<>)<{}<>>]}([{()<>}]{[<>()][{}[]]})}
|
||||
<<{<[<<<({{(<<[]>([])>{<{}<>><<><>>}){<<()<>><()<>>><(<>[])<{}<>>}}}{([{[]<>}{<>{}}](<()()>[{}{}]))<{<[]>
|
||||
[{{(([{[<{<{{<<><>><{}[]>}}{<(<>{}){[]}>[([]{})[[]{}]]}>(({[{}]<()[]>}))}><<[{(<{}[]><[][]>)
|
||||
[[[<[<[{{[<[{([]())[()[]]}{<{}<>>[()[]]}]<<{[][]}<()[]>>(<{}<>>{[]{}})>>{<<<{}()>><([]<>)[<>()]>>{{(
|
||||
{{{([{({[((((([][])[[]()])[(<><>)[()[]]])[[[<>[]]{{}<>}]<[{}[]]([][])>]){[[[[][]]<()<>>](<{}<>><{}{}>
|
||||
<<<[({{(<((<<{{}()]<()>>(<(){}><<>{}>)>(<{<>()}<[][]>><{<><>}{[]()}>))[(<([][])[<><>]>(<()()>{{}
|
||||
<[(([[(([[({[[[]()]{()()}](<<>{}>)}){<{{<>[]}{{}{}}}{<[]()>[{}{}]}][(<()[]>[<>[]])((<>{}))]}]{[<<<<>
|
||||
({{[{<[{([[({[(){}]}[{[]{}}<(){}>])<<({})[[]()]>>]<(({(){}}<[]>)<[<>{}}(<>())>)>])}<<<<[[[[]<>][{}()]]
|
||||
{{{[[([<{({{{<(){}><{}()>}([()()]<<>[]>)}<<[<>()]{{}<>}><<<><>>>>})([(<(()[])({}<>)>([{}<>](<>[]))){(<<>>
|
||||
<([([[<{{({{[[<>[]]({}[])]}(<({}())><[<>{}]>)}{[(<{}[]>(<>[]))([[]{}]{[]})]({([][])(<>())})}
|
||||
[({({{[{<{{(([{}]){<{}[]>([][])})({[[][]]<<>[]>}[<()<>><[]>])}<<<<{}{}>{[]()}>({[][]}[()()])>({([][])[<>{}]}[
|
||||
({<{(<([<[{<{<<>[]>({}{}>}([()<>]<[]<>>)>({{(){}}<<><>>}[({}{})])}]><<[(<<<>{}>([]())>)[[<[]<>>(
|
||||
<[{<{<<<({[([({}<>){()()}][<()()>(<><>)]){<{()[]}<<>[]>>{{{}()}[<>[]]}}](((<[]()>{<>()})(({}<>)([]{})))({(
|
||||
<<{<[[[<[<[[({()()}({}[]))[<()()>[()<>]]]]>][{[<<({}<>)[[][]]>{{{}[]}<()[]>)>]<{{[()[]][[]()]}}{<[
|
||||
<{<{({({[{<{[{()<>}]<<<><>><[]<>>>}[{<[]><(){}>}<{[]{}}(()<>)>]><{<{{}()}{(){}}>{<()<>>{[]()}}}((([]<>)<<>
|
||||
{(({[([(((<<([()()]<<>[]>)[<<>()>(<>{})]>[<<<><>><()>>]>[((<()()>((){})))[[<()<>><()()>)({{}[]}
|
||||
<[<[<{<[{[[([[()()]<{}<>>]){[[{}[]][<>()]]{[[]{}][()<>]}}]]<[{((<>())[[][]]>}([[()<>]<[][]>])](({[
|
||||
((<<[[{<({[([{<><>}[<>{}]]){(([]{}){(){}})}](<({{}()}<()<>>)({[]()}[[][]))>{{{{}()}[[][]]}<(<>{}){<>[]}>}
|
||||
<{{{[([({{[(<<[]<>>[{}<>]><<[]{}>(())>)<[[<>{}]<{}<>>]<{()}<{}{}>>>]}{{[<(<>{})<[]()>><[(){}]>][{([]())}[<
|
||||
[{<[<(<<{({[[<[]<>><()()>]([()()]<<>{}>)]}{(<{[]()}([]<>)><{()[]}>){<<[]()><{}<>>>({()}<<>[]>)}})}{
|
||||
[{(({[{[{(<[(<[]{}>(<><>))]<[{()}({}())]>><<[({}[]){<><>}](<[][]>[()[]])>[[([][])([]<>)](([]{}])]>)}]<[<[
|
||||
<({[([(<(((({(<>())<{}[]>}[(<>[]){()[]}]))){[([([]{})(<>()]]([()()][{}<>]))<<{{}}(<>[])>{{()
|
||||
((({{({<{<({[(<>[]){()()}]([{}[]][{}{}])})(<<{[]{}}>{<[]<>>{()[]}}>)><{{{{{}()}}{[{}[]]<<>[]>}
|
||||
(<[<<[([[{<[<({}()){()}>(<(){}><<><>>)]>{{([()[]]<<>()>)(<[]<>>)}{[{<>[]}[<>()]](<<>()><()[]
|
||||
((<<({<((<(<({<><>}({}<>))({{}{}}(<>()))>((([]()){(){}})[(()())(()())]>)>){{<([{<>()}(<><>)]<{<>()
|
||||
(({(<[({({([<{[]()}<<>()>>{(()<>)[[]()]}]{{[()()]((){})}{[{}<>]{(){}}}})}<<<(<()()>[{}{}])<([]{}){{}[]
|
||||
{({[[{([[[<((<(){}>{{}()})[(<>{})])([[<>[]]<()[]>][(()())<[]{}>]>>]((({[{}<>]<{}{}>})({<{}[]>}{(<>
|
||||
[[(({<<{[(<<(([][]){{}<>}){[{}[]]({}[])}>(({<><>})<(()<>)[<>()]})>{({[[]{}]((){})}[([]())])})(({([[][]]
|
||||
<[<{[<<<{[{(<[<>[]]>{{(){}}[[]()]})}[<{[{}{}]}><(<{}()]{{}{}}){({}[])}>]]}>[({{(<({}[])({}<>)>[{{}<>}])}{
|
@ -0,0 +1,52 @@
|
||||
#lang br
|
||||
(require racket/file rackunit)
|
||||
|
||||
(define (make-octopodes)
|
||||
(define octopodes (make-hasheqv))
|
||||
(for* ([(line lidx) (in-indexed (file->lines "11.rktd"))]
|
||||
[(depth cidx) (in-indexed line)])
|
||||
(hash-set! octopodes (make-rectangular cidx lidx) (string->number (string depth))))
|
||||
octopodes)
|
||||
|
||||
(define octopodes (make-octopodes))
|
||||
|
||||
(define (neighbors loc)
|
||||
(remove loc
|
||||
(for*/list ([rd '(-1 0 1)]
|
||||
[id '(-1 0 1)])
|
||||
(+ loc (make-rectangular rd id)))))
|
||||
|
||||
(define (increment! loc)
|
||||
(cond
|
||||
[(number? (hash-ref octopodes loc #false))
|
||||
(define next-val
|
||||
(match (modulo (add1 (hash-ref octopodes loc)) 10)
|
||||
[0 'flashed]
|
||||
[val val]))
|
||||
(hash-set! octopodes loc next-val)
|
||||
(when (eq? next-val 'flashed)
|
||||
(for-each increment! (neighbors loc)))]))
|
||||
|
||||
(define (find-flashes-and-reset)
|
||||
(for/list ([(loc val) (in-hash octopodes)]
|
||||
#:when (eq? val 'flashed))
|
||||
(hash-set! octopodes loc 0)
|
||||
loc))
|
||||
|
||||
(define (part-1)
|
||||
(for/fold ([flashes null]
|
||||
#:result (length flashes))
|
||||
([step (in-range 100)])
|
||||
(for-each increment! (hash-keys octopodes))
|
||||
(append (find-flashes-and-reset) flashes)))
|
||||
|
||||
(check-equal? (part-1) 1705)
|
||||
|
||||
(set! octopodes (make-octopodes))
|
||||
|
||||
(define (part-2)
|
||||
(for/or ([step (in-naturals)])
|
||||
(for-each increment! (hash-keys octopodes))
|
||||
(and (= (length (find-flashes-and-reset)) (length (hash-keys octopodes))) (add1 step))))
|
||||
|
||||
(check-equal? (part-2) 265)
|
@ -0,0 +1,10 @@
|
||||
3113284886
|
||||
2851876144
|
||||
2774664484
|
||||
6715112578
|
||||
7146272153
|
||||
6256656367
|
||||
3148666245
|
||||
3857446528
|
||||
7322422833
|
||||
8152175168
|
@ -0,0 +1,23 @@
|
||||
QR-da
|
||||
QR-end
|
||||
QR-al
|
||||
start-op
|
||||
zh-iw
|
||||
zh-start
|
||||
da-PF
|
||||
op-bj
|
||||
iw-QR
|
||||
end-HR
|
||||
bj-PF
|
||||
da-LY
|
||||
op-PF
|
||||
bj-iw
|
||||
end-da
|
||||
bj-zh
|
||||
HR-iw
|
||||
zh-op
|
||||
zh-PF
|
||||
HR-bj
|
||||
start-PF
|
||||
HR-da
|
||||
QR-bj
|
@ -0,0 +1,40 @@
|
||||
#lang br
|
||||
(require racket/file sugar rackunit racket/set)
|
||||
|
||||
(define-values (point-strs fold-strs) (splitf-at (file->lines "13.rktd") non-empty-string?))
|
||||
|
||||
(define points
|
||||
(for/seteqv ([str point-strs])
|
||||
(apply make-rectangular (map string->number (string-split (string-replace str "," " "))))))
|
||||
|
||||
(define creases
|
||||
(for/list ([str fold-strs]
|
||||
#:when (non-empty-string? str))
|
||||
(match (string-split str "=")
|
||||
[(list "fold along y" numstr) (* +i (string->number numstr))]
|
||||
[(list "fold along x" numstr) (string->number numstr)])))
|
||||
|
||||
(define (do-crease points [stop-at +inf.0])
|
||||
(for/fold ([points points])
|
||||
([crease creases]
|
||||
[i (in-range stop-at)])
|
||||
(for/seteqv ([pt points])
|
||||
(define imag-diff (- (imag-part pt) (imag-part crease)))
|
||||
(define real-diff (- (real-part pt) (real-part crease)))
|
||||
(cond
|
||||
[(and (zero? (real-part crease)) (positive? imag-diff))
|
||||
(+ (real-part pt) (* +i (- (imag-part crease) imag-diff)))]
|
||||
[(and (zero? (imag-part crease)) (positive? real-diff))
|
||||
(+ (- (real-part crease) real-diff) (* +i (imag-part pt)))]
|
||||
[else pt]))))
|
||||
|
||||
(check-equal? (set-count (do-crease points 1)) 706)
|
||||
|
||||
(define matrix (do-crease points))
|
||||
(for-each displayln
|
||||
(map string-join
|
||||
(for/list ([row (add1 (apply max (map imag-part (set->list matrix))))])
|
||||
(for/list ([col (add1 (apply max (map real-part (set->list matrix))))])
|
||||
(if (set-member? matrix (make-rectangular col row)) "X" " ")))))
|
||||
;; draws word LRFJBJEH
|
||||
|
@ -0,0 +1,865 @@
|
||||
1118,85
|
||||
1064,690
|
||||
560,670
|
||||
68,446
|
||||
769,668
|
||||
88,219
|
||||
120,255
|
||||
925,879
|
||||
112,512
|
||||
1064,652
|
||||
1046,233
|
||||
902,417
|
||||
523,33
|
||||
1012,280
|
||||
1210,135
|
||||
410,142
|
||||
689,497
|
||||
698,211
|
||||
981,259
|
||||
465,610
|
||||
689,621
|
||||
1093,887
|
||||
114,728
|
||||
790,809
|
||||
139,59
|
||||
798,257
|
||||
390,457
|
||||
482,281
|
||||
701,190
|
||||
840,283
|
||||
320,723
|
||||
498,504
|
||||
256,397
|
||||
100,115
|
||||
401,92
|
||||
796,780
|
||||
239,729
|
||||
755,539
|
||||
736,870
|
||||
676,567
|
||||
484,560
|
||||
405,511
|
||||
187,387
|
||||
356,155
|
||||
42,659
|
||||
182,508
|
||||
256,374
|
||||
572,320
|
||||
738,207
|
||||
328,80
|
||||
70,528
|
||||
1111,752
|
||||
648,54
|
||||
33,308
|
||||
716,704
|
||||
701,798
|
||||
700,324
|
||||
10,260
|
||||
1076,401
|
||||
554,533
|
||||
592,885
|
||||
269,575
|
||||
492,528
|
||||
646,837
|
||||
1134,268
|
||||
1290,619
|
||||
442,248
|
||||
549,519
|
||||
908,647
|
||||
402,280
|
||||
1081,428
|
||||
768,575
|
||||
1277,525
|
||||
472,121
|
||||
985,635
|
||||
912,374
|
||||
512,499
|
||||
708,807
|
||||
1054,558
|
||||
305,856
|
||||
401,756
|
||||
8,53
|
||||
1044,256
|
||||
607,581
|
||||
156,840
|
||||
756,331
|
||||
771,609
|
||||
276,456
|
||||
1268,842
|
||||
1123,387
|
||||
155,526
|
||||
1125,380
|
||||
612,52
|
||||
864,772
|
||||
572,126
|
||||
1084,597
|
||||
666,397
|
||||
574,169
|
||||
33,481
|
||||
1098,280
|
||||
468,215
|
||||
370,3
|
||||
639,204
|
||||
1230,466
|
||||
512,684
|
||||
705,161
|
||||
738,126
|
||||
355,376
|
||||
1096,736
|
||||
1166,476
|
||||
1036,135
|
||||
912,782
|
||||
947,32
|
||||
636,50
|
||||
623,250
|
||||
1257,215
|
||||
416,672
|
||||
989,74
|
||||
1300,852
|
||||
776,659
|
||||
1196,838
|
||||
1064,304
|
||||
252,471
|
||||
994,410
|
||||
459,33
|
||||
567,361
|
||||
489,159
|
||||
1240,528
|
||||
58,506
|
||||
944,339
|
||||
788,0
|
||||
319,857
|
||||
644,215
|
||||
787,33
|
||||
1198,767
|
||||
798,843
|
||||
920,233
|
||||
760,411
|
||||
1300,626
|
||||
52,311
|
||||
812,558
|
||||
378,227
|
||||
226,437
|
||||
386,444
|
||||
169,291
|
||||
308,172
|
||||
698,618
|
||||
514,231
|
||||
761,235
|
||||
157,774
|
||||
798,684
|
||||
902,29
|
||||
428,37
|
||||
698,52
|
||||
405,383
|
||||
1104,256
|
||||
1058,784
|
||||
299,518
|
||||
617,332
|
||||
346,498
|
||||
1178,89
|
||||
1290,275
|
||||
1196,166
|
||||
293,425
|
||||
895,567
|
||||
1034,662
|
||||
596,56
|
||||
687,250
|
||||
534,255
|
||||
623,698
|
||||
1309,719
|
||||
92,347
|
||||
226,297
|
||||
736,253
|
||||
497,155
|
||||
736,528
|
||||
776,780
|
||||
223,42
|
||||
465,732
|
||||
900,53
|
||||
493,411
|
||||
909,838
|
||||
542,512
|
||||
385,659
|
||||
537,590
|
||||
1228,80
|
||||
420,462
|
||||
761,519
|
||||
879,852
|
||||
1277,693
|
||||
908,838
|
||||
890,324
|
||||
1092,383
|
||||
691,862
|
||||
602,378
|
||||
416,224
|
||||
296,598
|
||||
666,215
|
||||
234,347
|
||||
902,142
|
||||
1101,253
|
||||
581,362
|
||||
316,567
|
||||
28,255
|
||||
929,824
|
||||
117,77
|
||||
848,515
|
||||
701,704
|
||||
1136,233
|
||||
485,680
|
||||
1233,511
|
||||
788,357
|
||||
246,304
|
||||
500,505
|
||||
1144,63
|
||||
738,320
|
||||
964,620
|
||||
623,413
|
||||
26,495
|
||||
58,390
|
||||
82,590
|
||||
930,311
|
||||
239,578
|
||||
748,784
|
||||
873,518
|
||||
385,879
|
||||
311,242
|
||||
1036,666
|
||||
1230,641
|
||||
1032,224
|
||||
80,325
|
||||
1233,383
|
||||
1290,171
|
||||
31,413
|
||||
1076,493
|
||||
402,838
|
||||
731,690
|
||||
977,522
|
||||
92,36
|
||||
144,476
|
||||
520,365
|
||||
428,396
|
||||
1196,390
|
||||
100,149
|
||||
818,752
|
||||
142,637
|
||||
21,882
|
||||
295,61
|
||||
631,435
|
||||
731,204
|
||||
676,584
|
||||
68,448
|
||||
748,544
|
||||
560,224
|
||||
1,719
|
||||
683,152
|
||||
490,590
|
||||
909,373
|
||||
517,568
|
||||
967,690
|
||||
1015,450
|
||||
1092,175
|
||||
729,532
|
||||
676,248
|
||||
912,858
|
||||
1180,0
|
||||
174,233
|
||||
73,586
|
||||
403,292
|
||||
325,635
|
||||
308,474
|
||||
733,511
|
||||
38,787
|
||||
278,222
|
||||
562,36
|
||||
485,603
|
||||
296,822
|
||||
428,149
|
||||
433,494
|
||||
1240,120
|
||||
136,175
|
||||
1240,366
|
||||
1240,774
|
||||
485,214
|
||||
73,745
|
||||
668,364
|
||||
1071,119
|
||||
185,514
|
||||
882,268
|
||||
544,614
|
||||
540,838
|
||||
139,773
|
||||
1005,236
|
||||
156,280
|
||||
1290,584
|
||||
813,155
|
||||
209,826
|
||||
773,572
|
||||
715,852
|
||||
11,700
|
||||
562,350
|
||||
209,701
|
||||
293,33
|
||||
117,301
|
||||
1248,710
|
||||
343,690
|
||||
274,359
|
||||
1146,646
|
||||
930,666
|
||||
189,162
|
||||
161,383
|
||||
485,291
|
||||
912,558
|
||||
252,784
|
||||
1237,745
|
||||
35,32
|
||||
105,235
|
||||
760,483
|
||||
62,821
|
||||
977,372
|
||||
366,591
|
||||
221,848
|
||||
120,108
|
||||
991,857
|
||||
909,381
|
||||
355,518
|
||||
316,791
|
||||
445,583
|
||||
422,710
|
||||
510,508
|
||||
52,516
|
||||
349,236
|
||||
277,201
|
||||
276,662
|
||||
676,758
|
||||
502,455
|
||||
353,844
|
||||
415,316
|
||||
28,404
|
||||
498,558
|
||||
554,107
|
||||
1101,701
|
||||
935,873
|
||||
865,701
|
||||
1071,327
|
||||
497,409
|
||||
756,626
|
||||
1272,555
|
||||
1118,851
|
||||
1073,280
|
||||
385,463
|
||||
954,827
|
||||
1048,845
|
||||
402,59
|
||||
602,807
|
||||
577,511
|
||||
234,509
|
||||
642,880
|
||||
97,428
|
||||
705,226
|
||||
73,532
|
||||
1179,33
|
||||
74,87
|
||||
226,361
|
||||
256,484
|
||||
1154,280
|
||||
989,887
|
||||
982,696
|
||||
977,74
|
||||
566,51
|
||||
480,45
|
||||
398,72
|
||||
142,283
|
||||
848,851
|
||||
957,844
|
||||
390,233
|
||||
999,242
|
||||
366,339
|
||||
776,255
|
||||
1096,830
|
||||
845,162
|
||||
403,826
|
||||
1078,264
|
||||
274,666
|
||||
622,506
|
||||
70,366
|
||||
64,49
|
||||
579,690
|
||||
373,490
|
||||
738,350
|
||||
667,362
|
||||
134,591
|
||||
1064,808
|
||||
438,212
|
||||
53,215
|
||||
226,533
|
||||
359,416
|
||||
989,603
|
||||
1262,357
|
||||
1096,64
|
||||
701,544
|
||||
890,570
|
||||
358,296
|
||||
821,175
|
||||
851,33
|
||||
356,826
|
||||
1094,212
|
||||
1213,428
|
||||
596,390
|
||||
1066,814
|
||||
80,466
|
||||
273,824
|
||||
35,862
|
||||
877,235
|
||||
484,616
|
||||
103,42
|
||||
1181,810
|
||||
385,435
|
||||
768,736
|
||||
1289,539
|
||||
1173,568
|
||||
760,847
|
||||
826,726
|
||||
808,631
|
||||
714,388
|
||||
274,135
|
||||
900,752
|
||||
808,263
|
||||
810,57
|
||||
468,887
|
||||
38,824
|
||||
907,826
|
||||
1277,586
|
||||
33,362
|
||||
497,215
|
||||
912,820
|
||||
1054,397
|
||||
512,658
|
||||
64,497
|
||||
410,814
|
||||
689,301
|
||||
756,533
|
||||
1029,311
|
||||
470,891
|
||||
525,84
|
||||
1002,474
|
||||
540,248
|
||||
664,501
|
||||
912,72
|
||||
70,8
|
||||
353,162
|
||||
1155,368
|
||||
156,558
|
||||
808,487
|
||||
156,54
|
||||
1300,260
|
||||
192,67
|
||||
33,273
|
||||
338,266
|
||||
909,92
|
||||
117,814
|
||||
1158,36
|
||||
356,778
|
||||
1258,516
|
||||
1066,798
|
||||
957,162
|
||||
1228,768
|
||||
361,469
|
||||
157,215
|
||||
810,505
|
||||
687,413
|
||||
335,37
|
||||
1058,23
|
||||
920,498
|
||||
714,623
|
||||
1282,137
|
||||
1202,413
|
||||
1076,122
|
||||
251,327
|
||||
310,469
|
||||
1190,108
|
||||
687,385
|
||||
621,593
|
||||
403,567
|
||||
623,196
|
||||
882,793
|
||||
1228,590
|
||||
408,477
|
||||
296,72
|
||||
114,248
|
||||
808,256
|
||||
469,828
|
||||
825,456
|
||||
718,9
|
||||
1071,165
|
||||
301,550
|
||||
1169,882
|
||||
1041,459
|
||||
944,303
|
||||
560,710
|
||||
522,357
|
||||
338,215
|
||||
537,145
|
||||
687,698
|
||||
972,215
|
||||
328,814
|
||||
1265,404
|
||||
321,74
|
||||
909,597
|
||||
1242,448
|
||||
33,525
|
||||
120,786
|
||||
684,379
|
||||
164,248
|
||||
537,817
|
||||
1158,401
|
||||
329,259
|
||||
349,210
|
||||
1190,3
|
||||
550,847
|
||||
649,522
|
||||
276,214
|
||||
933,609
|
||||
1248,73
|
||||
542,158
|
||||
842,332
|
||||
842,108
|
||||
726,366
|
||||
1054,334
|
||||
1168,645
|
||||
252,871
|
||||
681,792
|
||||
602,29
|
||||
1141,291
|
||||
912,385
|
||||
462,379
|
||||
1174,495
|
||||
633,38
|
||||
20,310
|
||||
1193,814
|
||||
169,774
|
||||
643,252
|
||||
554,779
|
||||
1002,722
|
||||
1258,67
|
||||
298,378
|
||||
1054,547
|
||||
502,858
|
||||
1126,89
|
||||
333,74
|
||||
1014,520
|
||||
1081,690
|
||||
45,796
|
||||
1081,466
|
||||
146,469
|
||||
909,166
|
||||
902,752
|
||||
1250,32
|
||||
663,409
|
||||
131,861
|
||||
840,197
|
||||
174,45
|
||||
152,858
|
||||
186,679
|
||||
74,59
|
||||
164,590
|
||||
622,394
|
||||
964,396
|
||||
141,882
|
||||
1153,663
|
||||
584,8
|
||||
909,728
|
||||
321,7
|
||||
1222,135
|
||||
277,693
|
||||
252,423
|
||||
890,509
|
||||
162,287
|
||||
1071,266
|
||||
110,627
|
||||
305,38
|
||||
1275,862
|
||||
298,166
|
||||
838,569
|
||||
1054,484
|
||||
493,595
|
||||
110,491
|
||||
381,455
|
||||
572,687
|
||||
70,120
|
||||
773,817
|
||||
229,204
|
||||
566,135
|
||||
18,50
|
||||
114,390
|
||||
565,26
|
||||
902,466
|
||||
1135,674
|
||||
308,26
|
||||
1210,485
|
||||
502,493
|
||||
944,555
|
||||
256,560
|
||||
1153,774
|
||||
865,68
|
||||
28,137
|
||||
184,197
|
||||
962,809
|
||||
894,222
|
||||
634,567
|
||||
622,58
|
||||
808,183
|
||||
539,285
|
||||
1277,397
|
||||
522,537
|
||||
112,158
|
||||
1136,661
|
||||
114,646
|
||||
1200,280
|
||||
1263,89
|
||||
356,827
|
||||
87,640
|
||||
462,809
|
||||
21,539
|
||||
52,378
|
||||
771,285
|
||||
293,273
|
||||
246,735
|
||||
564,772
|
||||
714,390
|
||||
565,868
|
||||
401,597
|
||||
1034,438
|
||||
621,621
|
||||
1154,838
|
||||
92,99
|
||||
1300,186
|
||||
1237,532
|
||||
321,603
|
||||
664,837
|
||||
445,193
|
||||
1092,831
|
||||
234,401
|
||||
100,745
|
||||
1258,378
|
||||
1198,127
|
||||
550,411
|
||||
1034,456
|
||||
112,127
|
||||
11,194
|
||||
730,535
|
||||
872,614
|
||||
977,455
|
||||
1174,719
|
||||
937,190
|
||||
950,836
|
||||
237,280
|
||||
661,344
|
||||
246,204
|
||||
1193,301
|
||||
165,383
|
||||
164,764
|
||||
1009,102
|
||||
994,268
|
||||
373,190
|
||||
1174,175
|
||||
62,73
|
||||
907,567
|
||||
356,728
|
||||
120,3
|
||||
1252,56
|
||||
209,641
|
||||
113,226
|
||||
821,595
|
||||
738,277
|
||||
1176,533
|
||||
1009,498
|
||||
687,196
|
||||
1278,52
|
||||
1179,861
|
||||
502,519
|
||||
1076,547
|
||||
1169,12
|
||||
882,37
|
||||
244,814
|
||||
661,550
|
||||
925,659
|
||||
1171,59
|
||||
339,362
|
||||
1076,285
|
||||
1084,533
|
||||
1210,745
|
||||
808,519
|
||||
764,749
|
||||
689,273
|
||||
1092,511
|
||||
514,332
|
||||
398,173
|
||||
1014,72
|
||||
401,138
|
||||
1190,255
|
||||
1250,862
|
||||
622,388
|
||||
687,478
|
||||
333,372
|
||||
370,190
|
||||
694,385
|
||||
1124,556
|
||||
1056,749
|
||||
649,792
|
||||
154,729
|
||||
301,844
|
||||
329,635
|
||||
58,838
|
||||
940,190
|
||||
281,641
|
||||
515,387
|
||||
813,215
|
||||
841,262
|
||||
617,556
|
||||
1230,204
|
||||
930,379
|
||||
1012,291
|
||||
1218,795
|
||||
428,268
|
||||
21,486
|
||||
185,380
|
||||
1029,583
|
||||
315,586
|
||||
281,583
|
||||
100,268
|
||||
1088,859
|
||||
971,308
|
||||
88,395
|
||||
597,207
|
||||
621,273
|
||||
10,186
|
||||
370,704
|
||||
714,504
|
||||
427,770
|
||||
256,385
|
||||
1218,544
|
||||
485,829
|
||||
59,318
|
||||
744,135
|
||||
160,607
|
||||
972,716
|
||||
440,736
|
||||
291,862
|
||||
20,584
|
||||
840,891
|
||||
294,500
|
||||
920,457
|
||||
776,639
|
||||
679,435
|
||||
276,227
|
||||
1123,835
|
||||
216,491
|
||||
410,53
|
||||
646,841
|
||||
513,12
|
||||
32,282
|
||||
643,700
|
||||
1158,455
|
||||
1171,773
|
||||
216,212
|
||||
0,287
|
||||
146,425
|
||||
380,807
|
||||
1138,57
|
||||
932,227
|
||||
555,539
|
||||
21,42
|
||||
346,396
|
||||
688,282
|
||||
385,431
|
||||
398,273
|
||||
428,857
|
||||
132,313
|
||||
540,646
|
||||
52,827
|
||||
161,859
|
||||
1037,439
|
||||
641,446
|
||||
574,477
|
||||
281,311
|
||||
1198,158
|
||||
1200,715
|
||||
70,558
|
||||
139,387
|
||||
932,848
|
||||
744,311
|
||||
1002,172
|
||||
964,26
|
||||
169,120
|
||||
301,498
|
||||
642,364
|
||||
580,731
|
||||
909,354
|
||||
217,7
|
||||
1041,575
|
||||
1289,38
|
||||
1022,833
|
||||
1279,481
|
||||
1154,558
|
||||
1196,504
|
||||
104,607
|
||||
415,809
|
||||
1275,32
|
||||
398,334
|
||||
756,50
|
||||
182,773
|
||||
208,772
|
||||
1154,728
|
||||
1158,858
|
||||
730,59
|
||||
62,184
|
||||
957,344
|
||||
890,547
|
||||
1176,591
|
||||
73,362
|
||||
515,507
|
||||
1145,511
|
||||
1277,621
|
||||
62,9
|
||||
1277,413
|
||||
361,873
|
||||
786,0
|
||||
483,857
|
||||
534,780
|
||||
1252,838
|
||||
796,332
|
||||
1083,803
|
||||
662,840
|
||||
682,399
|
||||
798,499
|
||||
925,459
|
||||
1228,687
|
||||
895,316
|
||||
541,276
|
||||
208,324
|
||||
523,705
|
||||
907,292
|
||||
468,332
|
||||
1289,355
|
||||
667,700
|
||||
402,647
|
||||
416,387
|
||||
1054,560
|
||||
31,481
|
||||
920,396
|
||||
234,45
|
||||
|
||||
fold along x=655
|
||||
fold along y=447
|
||||
fold along x=327
|
||||
fold along y=223
|
||||
fold along x=163
|
||||
fold along y=111
|
||||
fold along x=81
|
||||
fold along y=55
|
||||
fold along x=40
|
||||
fold along y=27
|
||||
fold along y=13
|
||||
fold along y=6
|
@ -0,0 +1,54 @@
|
||||
#lang br
|
||||
(require racket/file sugar rackunit racket/dict)
|
||||
|
||||
(define lines (file->lines "14.rktd"))
|
||||
|
||||
(define (template->duos template-str)
|
||||
(define cs (string->list template-str))
|
||||
(for/list ([c1 cs]
|
||||
[c2 (cdr cs)])
|
||||
(list c1 c2)))
|
||||
|
||||
(define starting-template (car lines))
|
||||
(define template (frequency-hash (template->duos starting-template)))
|
||||
|
||||
(define rule-strs (cddr lines))
|
||||
(define procs (for/list ([rule-str rule-strs])
|
||||
(match-define (list pat repl) (string-split rule-str " -> "))
|
||||
(define duo (string->list pat))
|
||||
(define replc (string-ref repl 0))
|
||||
(λ (h)
|
||||
(match (hash-ref h duo #f)
|
||||
[#false null]
|
||||
[duo-count
|
||||
(define new-left-duo (list (first duo) replc))
|
||||
(define new-right-duo (list replc (second duo)))
|
||||
(cons
|
||||
(cons duo (- duo-count))
|
||||
(map (λ (new-duo) (cons new-duo duo-count))
|
||||
(list new-left-duo new-right-duo)))]))))
|
||||
|
||||
(define (do-insertion template steps)
|
||||
(for/fold ([template template])
|
||||
([step steps])
|
||||
(define delta-dict (append-map (λ (proc) (proc template)) procs))
|
||||
(define this-template (make-hash))
|
||||
(for ([(k v) (in-dict (append (hash->list template) delta-dict))])
|
||||
(hash-update! this-template k (λ (val) (+ val v)) 0))
|
||||
this-template))
|
||||
|
||||
(define (element-counts template)
|
||||
(define orig-template-cs (string->list starting-template))
|
||||
(define h (make-hash))
|
||||
(for* ([(k v) (in-dict template)]
|
||||
[c k])
|
||||
(hash-update! h c (λ (val) (+ val v)) 0))
|
||||
(for-each (λ (c) (hash-update! h c add1)) (list (first orig-template-cs) (last orig-template-cs)))
|
||||
(for/hash ([(k v) (in-hash h)])
|
||||
(values k (/ v 2))))
|
||||
|
||||
(define (score template)
|
||||
(- (apply max (hash-values template)) (apply min (hash-values template))))
|
||||
|
||||
(check-equal? (score (element-counts (do-insertion template 10))) 2703)
|
||||
(check-equal? (score (element-counts (do-insertion template 40))) 2984946368465)
|
@ -0,0 +1,102 @@
|
||||
BVBNBVPOKVFHBVCSHCFO
|
||||
|
||||
SO -> V
|
||||
PB -> P
|
||||
HV -> N
|
||||
VF -> O
|
||||
KS -> F
|
||||
BB -> C
|
||||
SH -> H
|
||||
SB -> C
|
||||
FS -> F
|
||||
PV -> F
|
||||
BC -> K
|
||||
SF -> S
|
||||
NO -> O
|
||||
SK -> C
|
||||
PO -> N
|
||||
VK -> F
|
||||
FC -> C
|
||||
VV -> S
|
||||
SV -> S
|
||||
HH -> K
|
||||
FH -> K
|
||||
HN -> O
|
||||
NP -> F
|
||||
PK -> N
|
||||
VO -> K
|
||||
NC -> C
|
||||
KP -> B
|
||||
CS -> C
|
||||
KO -> F
|
||||
BK -> N
|
||||
OO -> N
|
||||
CF -> H
|
||||
KN -> C
|
||||
BV -> S
|
||||
OK -> O
|
||||
CN -> F
|
||||
OP -> O
|
||||
VP -> N
|
||||
OC -> P
|
||||
NH -> C
|
||||
VN -> S
|
||||
VC -> B
|
||||
NF -> H
|
||||
FO -> H
|
||||
CC -> B
|
||||
KB -> N
|
||||
CP -> N
|
||||
HK -> N
|
||||
FB -> H
|
||||
BH -> V
|
||||
BN -> N
|
||||
KC -> F
|
||||
CV -> K
|
||||
SP -> V
|
||||
VS -> P
|
||||
KF -> S
|
||||
CH -> V
|
||||
NS -> N
|
||||
HS -> O
|
||||
CK -> K
|
||||
NB -> O
|
||||
OF -> K
|
||||
VB -> N
|
||||
PS -> B
|
||||
KH -> P
|
||||
BS -> C
|
||||
VH -> C
|
||||
KK -> F
|
||||
FN -> F
|
||||
BP -> B
|
||||
HF -> O
|
||||
HB -> V
|
||||
OV -> H
|
||||
NV -> N
|
||||
HO -> S
|
||||
OS -> H
|
||||
SS -> K
|
||||
BO -> V
|
||||
OB -> K
|
||||
HP -> P
|
||||
CO -> B
|
||||
PP -> K
|
||||
HC -> N
|
||||
BF -> S
|
||||
NK -> S
|
||||
ON -> P
|
||||
PH -> C
|
||||
FV -> H
|
||||
CB -> H
|
||||
PC -> K
|
||||
FF -> P
|
||||
PN -> P
|
||||
NN -> O
|
||||
PF -> F
|
||||
SC -> C
|
||||
FK -> K
|
||||
SN -> K
|
||||
KV -> P
|
||||
FP -> B
|
||||
OH -> F
|
@ -0,0 +1,59 @@
|
||||
#lang br
|
||||
(require racket/file graph rackunit)
|
||||
|
||||
(define lines (file->lines "15.rktd"))
|
||||
|
||||
(define grid (for*/list ([(line ridx) (in-indexed lines)]
|
||||
[(num cidx) (in-indexed (map string->number (regexp-match* #rx"." line)))])
|
||||
(cons (make-rectangular cidx ridx) num)))
|
||||
|
||||
(define data (make-hash grid))
|
||||
|
||||
(define (row-length data) (add1 (apply max (map imag-part (hash-keys data)))))
|
||||
(define (col-length data) (add1 (apply max (map real-part (hash-keys data)))))
|
||||
|
||||
(define (make-grid-graph data)
|
||||
(define rows (row-length data))
|
||||
(define cols (col-length data))
|
||||
(define g (weighted-graph/directed null))
|
||||
(for ([k (in-hash-keys data)])
|
||||
(add-vertex! g k))
|
||||
(define (edges-between pt0 pt1)
|
||||
(add-directed-edge! g pt0 pt1 (hash-ref data pt1))
|
||||
(add-directed-edge! g pt1 pt0 (hash-ref data pt0)))
|
||||
(for ([v (in-vertices g)])
|
||||
(unless (= (real-part v) (sub1 cols))
|
||||
(edges-between v (add1 v)))
|
||||
(unless (= (imag-part v) (sub1 rows))
|
||||
(edges-between v (+ +i v))))
|
||||
g)
|
||||
|
||||
(define (preds->path preds dest)
|
||||
(for/fold ([path (list dest)])
|
||||
([i (in-naturals)]
|
||||
#:break (zero? (car path)))
|
||||
(cons (hash-ref preds (car path)) path)))
|
||||
|
||||
(define (solve data)
|
||||
(define g (make-grid-graph data))
|
||||
(define-values (paths preds) (dijkstra g 0))
|
||||
(define dest (make-rectangular (sub1 (col-length data)) (sub1 (row-length data))))
|
||||
(hash-ref paths dest))
|
||||
(check-equal? (solve data) 487)
|
||||
|
||||
(define big-data (make-hash))
|
||||
(define rows (row-length data))
|
||||
(define cols (col-length data))
|
||||
|
||||
(for* ([(k v) (in-hash data)]
|
||||
[rowrepeat 5]
|
||||
[colrepeat 5])
|
||||
(define next-val (+ v colrepeat rowrepeat))
|
||||
(hash-set! big-data (+ k (make-rectangular (+ (* colrepeat cols)) (+ (* rowrepeat rows))))
|
||||
(cond
|
||||
[(> next-val 9) (- next-val 9)]
|
||||
[else next-val])))
|
||||
|
||||
;; graph library is too slow to solve big grid
|
||||
;; needs dynamic programming
|
||||
#;(solve big-data)
|
@ -0,0 +1,100 @@
|
||||
3576219475874583191916312133474175459337114195988185136398151631965391991813219974121211251194786128
|
||||
1713881999231519357799114192443351147195293575386923868711388519361669464234397975938889146414199688
|
||||
2151922113728581598379349983928489926261239862882888968998791929828316718921297117449631496888879522
|
||||
3291722311299652548445221254456535112944431135116631433192483199481594768169444158222431199929579291
|
||||
1472287315918113113959972189351931626141472991992791413146153989481318998519171231313898962992319251
|
||||
8978798318873934543151823824117132228417869392811216547172919119998739911121199246294815175868992773
|
||||
4711149989992717728465321161611967173674239298593935117599173279267114155265393397571372124856718732
|
||||
9843245319692998612781837729915931371619886371128818266322121623171343132131239399743799827972585645
|
||||
7183211712173272827112268971459424836293613294388761928991542137194981939169315879277494581991465822
|
||||
2385721996578834579224651431411717198341139751429156637229888849181154922897746418293184413519931124
|
||||
6188313732929496115412842928273812153715747411177189187726751991191841181119822534511125656211991265
|
||||
8797112815141319881991983914861912838966446818811271274141461487947171138945321912192198815813211761
|
||||
6131514331472951494911549373681638637191295997625615885219668259269297171939941498581919718223529141
|
||||
3916711951831246219991217199412116783411218814949692281987659123812288937983969116847986196936523779
|
||||
9111121227192813382983442234171148191131821497435387936912532695293912972491131977272231919798477344
|
||||
9994893855122115213919995636978443773161196511775674783979472217917498285423121574533491643891265199
|
||||
9245818921321877317663254739619499915821162412924816263648913499811482474392667993739139899758919393
|
||||
1717618849193152316325119128859116191132672215933282127611134982961918179152189411131259943819997123
|
||||
3697848795188715264992962617223177221118919863975198881197837936258983111819488622362584888223331999
|
||||
1798259211962116675922944295117391732295963342131192112612386194749389991199821195162975124619149837
|
||||
5365696872959269494682128272373619348283964191994187749824841195582221478325111187843285531119934786
|
||||
6717218734155417511564162235845524121493736962442884479191718924594119911521121422231982184671122116
|
||||
9346412964321187889663345611132183519588187791111227269112129947122999176114184938494824342939375892
|
||||
2912811929919891428891223818529115949522464779949526791515797886471246181118183121786524127979998512
|
||||
7353285281129811915971956929718433284441492484117162562212973157265812816731843791838571691421923924
|
||||
3239161911151141369392413114665193927469988999219478935992541193184945926828911597158489999651151172
|
||||
9229716159183212219791136121569512978927999177196111291668152292896495877722611129462617229299962112
|
||||
5994461796358342348216915883991574569784887978731368749888449599246152414391635925763156831839199496
|
||||
1569319989929452917219726368583887924179117119284971126181346919789949393972171262535283921926293357
|
||||
9983673949614595396426594299567925779229751982433631919159114841538978735893759492592481573495963491
|
||||
3725632421623191323789991288299296415942162988289929992238877153268488127718372211951117951486111926
|
||||
1219319492614741819142363452974731825929485665978219725131218962626179997611254524524915768686381164
|
||||
8248145978417221154822663831966124539168641311913211295941167919583189792718599334616827916567313217
|
||||
3483959252172951953519211189255336234459522397526829492685113849198611624111948187714151963198671919
|
||||
7812289559812455122297839958719917624841136314322613942214613249662544617928521344873779598816941946
|
||||
6868958791119815122313931178313637489923479492171741443993619161318781194421239654468391996636923611
|
||||
6999166111129212624151555925991311538952878946191234511973499736237742491811348911419449161895978178
|
||||
3532973784281182181552481928144111246711742443831184236962981395142863562121961323169398316921741321
|
||||
8433727191521455193223914171391447439164791659118411391327413285243717794299999523811137619197999791
|
||||
8169125649963232439519311131691539694589231314268683691811431259295132344195953951287639889737849189
|
||||
8928161919934761971442719391119881113318323987227229831917897151155121657624142152884624176461913498
|
||||
2949199492196424164751892146395174669111921799261527568751283712133148212821261936297739912939743599
|
||||
9931616797885267969938591912672996183187926259991298429278229232257219428413174972999193796827459799
|
||||
3138768154311742899419449741617489465993174645228814938145273266941566223933119891379181296548999222
|
||||
1338961668848636157444719898575174699419997972125194827176897565699991611654214368232592793825617931
|
||||
9283643143692917314535119897889711191946688911436965194232811624712861576291987716317193114445363435
|
||||
8718611398299869991788113111214414269554542114329621286592313532782819131919527228417764279755899812
|
||||
8128249329314753847725634378737239939769913811444529224619715471961999278915341955188871714271145449
|
||||
1286217894699991715153139268991918988338684391252271254127193342854156438873836258484975151167996316
|
||||
4191439845728418348368191516746499654147257851256861534634988281199187541199892317145428248531129171
|
||||
9799283477747387253566811199414256363339122372629545249542373591951156699415998714124115397811359516
|
||||
3191985767689943186838293175311429527499612824265518522881922917119891424717751985621941995373481629
|
||||
8127933395192162886259956635985821651844893796541627799276258692298972881471991789861232424926758792
|
||||
4349683335349673317521761437148933192989961489478395417258212949865876242843242464123471244631449998
|
||||
3983861771861891251448475182984833811718959521263444111998834975935221115813839514917176912994677265
|
||||
3361812177831144971531441184671112122322312961859915722393944269211333951428175372918136112814926411
|
||||
2492891241191991149319731182431211211971267682931551534199328118919751416881458658314218331565282229
|
||||
1316191719349114251772629411233483317516143684488291792691839198723174287211241498955137331159443961
|
||||
1295632882814319179937625629218199381191127966181781921829819969815912382191294796979515315471941392
|
||||
1952318366571121641614137937116326339638859628226299126699118638171813164397332391891669798271559135
|
||||
1123676641998146639499323488991286491444174358479157916696196841912233773269986812299996975117612192
|
||||
2496461124219121332118311532239527696198787778122345883331631119147159212262659717289674149798169111
|
||||
3994915157217763242581922474512992479146377117411981999549977495462427199524334285127723311599337186
|
||||
2856249932899117429471617195415229923432185189218399415357391954728651191591964713418532917111296399
|
||||
1916415314958527255299763241981929186681257596912948977397875248189748655173819381269954513499896991
|
||||
4214987991254389723346911149661118597277889213928551947599177915888233175182921923128853579525754718
|
||||
3582279578128192231339943295188563998645998149526284997789731787116991199391984141983177825883111821
|
||||
3318115949152512995142691231324793411691198458654473675135993122216324137859959272731599996923465431
|
||||
9431374329994955614816239978928993493129129641248882311462522524447519388869238199852941551532223632
|
||||
6749132793518479891929891686579791123712167784913331559922969149125915827657111724348929978159964476
|
||||
6899888192198113996189996152913216258469182711411338723293823541574149295918323829819122941288693461
|
||||
9833728958423343229397292861582211971713299293611778961979819175799893793971822162383179128129741328
|
||||
9719459171294372288418126215914532995125999274359633129923191213332337513812761149562146497198614329
|
||||
6323381739518574154814713691189651618965915153972197836392492518147816118266818195856772641337997448
|
||||
9515391698994467556612815425651153225477392335219196697477512338938131933398177519117437353271396315
|
||||
2881769116189531115832167881372917543267529333184621316918481786111252281738298936313393416198972192
|
||||
1262821848371618529985323295192217356152412696271318793198457225899782896767339942896611231999996177
|
||||
7611115824284211421951282951346181221891123993118231772195952872865982323819415318945742389969468591
|
||||
6289176957971112617212793915412958239574931721216722823933461763146195116737161463663388274118352919
|
||||
2739192179312181318764617662499189345995579913463399176128133623751919135855775349195561978131664671
|
||||
7419179135228196296753972713643556671138381494838116814212892453118963456121883515171981991493112197
|
||||
2351962484381996196119791327953881225881124837211622273581789216339733276411173141146816794919111532
|
||||
4828494193941149581788515219884312818182198261739598611663311138255885557141492174934279519487959315
|
||||
6266441934234532987821537914696156313934795144412166199339199381197916324959558778257894958593689511
|
||||
1218836684761811498991162549547375891999161535133511817388897491266957819219117988952234747197245136
|
||||
7714718988198712181711441996373181351671962319416917816121119483959397254815953421521642116185224622
|
||||
6315878819598412161782318179586237893968466116199183185764132999388411414821117761121199725212571499
|
||||
9298381112525419214597534611761811137687414291394795245955115116482261788724982532573616634235949295
|
||||
2513837618149681781571514782119218925111312739891194994857915371836413112952729282168681511999132471
|
||||
9859244419394114469927618849921646911349163815889492121537711577378978633345419421881312649299234749
|
||||
6241913851991287776811271361777919519213726771122769111499925516752149976397933753482495291399144132
|
||||
7549785323789821947513966787125532113931855716249321712383292746672763573114656989299712174939322181
|
||||
9188852123922512181114117536955617335173328988385462159798591117758397298294919117614163738414981949
|
||||
2974419341361292817129453536824618155299993142149899966226312193848695911943416589913541194129913422
|
||||
1672761999113289962322634642122163368424955339864962951462929691975798622972131599198673671183449929
|
||||
3462285147627397867977869242451116812198183328383813959284449969199819896174618466572298882951459875
|
||||
6153638634925613615423256118159531429294172496996993184762972841759153392753653191942715379879852345
|
||||
6516291128536155113712481272992636373774429965994966353494115221979925592128929821611928492143929534
|
||||
3993993153713717844719492314391992638719111242291783837279215399219822611221331985991484863975594721
|
||||
5995891457939115884519762228128552168915218299831775259316392719113962218429351553267511523198149462
|
Reference in New Issue